Measurement of Top Quark Properties @ LHC

Alison Lister
On behalf of the ATLAS and CMS Collaborations
Goal is to
• Get a complete picture of the heaviest known quark
• Look for signs of weakness of the SM

Behave as predicted by the SM?
• Spin, charge, correlation, lifetime, ...
 • Mass and Xs: see other talks today
• Produced as expected?
 • Resonances: See talk Tue (E. Moyse)
• Decay as expected?
• Only top or something similar?
MEASUREMENTS OF PROPERTIES

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP
CHARGE

What

- Is the charge
 - SM: 2/3e
 - Exotic test: 4/3e

How

- Charge of W through charge of lepton
- Charge of b-jet through soft lepton tagger
 - Charged track weighting
 - Semi-leptonic b-decay: use lepton charge

Charge 4/3e excluded at >5σ

16/03/2012 Moriond QCD Alison Lister

ATLAS-CONF-2011-141 CMS-PAS-TOP-11-031
What
• Measurement of spin correlations in $t\bar{t}$ events
 • Check $\tau_t <$ strong interaction
 • Measure fraction of SM-like events (f^{SM})

How
• Dilepton
• $\Delta\Phi$ between 2 leptons in lab frame
 • Binned Likelihood fit to two templates

$f^{SM} = 1.06 \pm 0.21\,(\text{stat.})^{+0.40}_{-0.27}\,(\text{syst.})$

Excludes no-correlation at $> 3 \sigma$
What

- Rapidity difference between top and anti-top
- Investigate Tevatron (CDF) excess
 - CDF larger excess for $m_{tt} > 450$ GeV
 - Not same observable at LHC!

How

- l+jets channel, b-tagged
- Subtract background
- Correct (particle level) for detector and acceptance effects

\[A_C = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)} \]

\[\Delta |y| = |y_t| - |y_{\bar{t}}| \]

\[A_C^{(MC@NLO)} = 0.006 \pm 0.002 \]

CMS: $A_C = 0.004 \pm 0.010$(stat) ± 0.012(syst)

ATLAS: $A_C = -0.018 \pm 0.028$(stat) ± 0.023(syst)
CHARGE ASYMMETRY

ATLAS Preliminary

CMS (new)

SM subtracted (both axes)

ATLAS Preliminary

CMS-PAS-TOP-11-030
W-BOSON POLARIZATION

\[
\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta^*} = \frac{3}{8} (1 + \cos \theta^*)^2 F_R + \frac{3}{8} (1 - \cos \theta^*)^2 F_L + \frac{3}{4} (1 - \cos^2 \theta^*) F_0
\]

How

- \(\theta^* \): Angle between \(\vec{p}(\text{lep}) \) in W rest-frame and \(\vec{p}(W) \) in top rest-frame
- Kinematic fit to event
- Remove background
- Unfold to particle-level

<table>
<thead>
<tr>
<th>Polarisation</th>
<th>Predicted NNLO</th>
<th>ATLAS Measured</th>
<th>CMS Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_R)</td>
<td>0.0017 ± 0.0001</td>
<td>0.09 ± 0.04(stat) ± 0.09(syst)</td>
<td>0.040 ± 0.035(stat) ± 0.044(syst)</td>
</tr>
<tr>
<td>(F_L)</td>
<td>0.311 ± 0.005</td>
<td>0.35 ± 0.04(stat) ± 0.04(syst)</td>
<td>0.393 ± 0.045(stat) ± 0.029(syst)</td>
</tr>
<tr>
<td>(F_0)</td>
<td>0.687 ± 0.005</td>
<td>0.57 ± 0.07(stat) ± 0.09(syst)</td>
<td>0.567 ± 0.074(stat) ± 0.047(syst)</td>
</tr>
</tbody>
</table>
ANOMALOUS WTB

What

• Assume scale of new physics >> observable region
 • Modeled as effective field theory
 • Add dimension 6 operators to modify Wtb
 • New physics parametrised as effective Lagrangian
 • \(V_L, V_R, g_L, g_R \): dimensionless constants (related to couplings and scale of new physics)

\[
\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \gamma^\mu (V_L P_L + V_R P_R) t W_\mu^- - \frac{g}{\sqrt{2}} \frac{i \sigma^{\mu\nu} q_v}{M_W} (g_L P_L + g_R P_R) t W_\mu^- + \text{h.c.,}
\]

How

• ATLAS uses asymmetry \(A_\pm \) of \(\cos \theta^* \) > or < \(\pm (2^{2/3} - 1) \)

Assume: \(V_R = 0, V_L = 1 \)
$t\bar{t} + $ JET VETO

\[f(Q_0) = \frac{n(Q_0)}{N} = \frac{\sigma(Q_0)}{\sigma} \]

\[f(Q_{sum}) = \frac{n(Q_{sum})}{N} = \frac{\sigma(Q_{sum})}{\sigma} \]

What
- $t\bar{t}$ production with a veto on central jet activity
- Fraction of events that do NOT contain jet activity with $p_T > Q$
 - Leading p_T emissions from $t\bar{t}$ (Q_0)
 - All hard emissions from $t\bar{t}$ (Q_{sum})

How
- High purity: dilepton +2 b-tags
- No extra jet with $p_T > Q$ in 4 $|\eta|$ regions
- Correct for detector effects
BRANCHING RATIO

\[R = \frac{BR(t \rightarrow Wb)}{BR(t \rightarrow Wq)} \]

BR_{SM \, const}(t \rightarrow Wq) = 0.999152^{+0.000030}_{-0.000045}

What
- Look for decays other than t→Wb
 - Limit on: t→Wq

How
- Dilepton channel

\[R = 0.98 \pm 0.03 \, (\text{stat} + \text{sys}) \]
FCNC IN tt}

What
- Look for decays other than $t \rightarrow Wb$
 - One top: $t \rightarrow Zq$
 - Other top: $t \rightarrow Wb$

How
- 3 leptons (2 form a Z)
- CMS: use b-tagging

CMS: $BR(t \rightarrow qZ) < 0.34\%$
ATLAS: $BR(t \rightarrow qZ) < 1.1\%$
FCNC IN SINGLE TOP

What
- Looking for FCNC in production

How
- Look for $t \rightarrow gq$
 - Leptonic decays + btagging

$BR(t \rightarrow ug) < 5.7 \cdot 10^{-5}$
$BR(t \rightarrow cg) < 2.7 \cdot 10^{-4}$

arXiv:1203.0529
SEARCHES FOR NEW PHYSICS IN TOP-LIKE FINAL STATES

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
<table>
<thead>
<tr>
<th>Mass Limit [GeV]</th>
<th>Channel</th>
<th>Exp.</th>
<th>Lumi [fb^{-1}]</th>
<th>Published</th>
<th>Variable</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(t' \to Wb)</td>
</tr>
<tr>
<td>560</td>
<td>l+jets, btag</td>
<td>CMS</td>
<td>4.6(7)</td>
<td>CMS PAS EXO-11-099</td>
<td>(H_T) vs (M_{reco})</td>
<td>(S/B) bin merging</td>
</tr>
<tr>
<td>404</td>
<td>l+jets, btag</td>
<td>ATLAS</td>
<td>1.0</td>
<td>arXiv:1202.3076</td>
<td>(M_{reco})</td>
<td>profiling</td>
</tr>
<tr>
<td>550</td>
<td>dilepton</td>
<td>CMS</td>
<td>4.7</td>
<td>?</td>
<td>counting</td>
<td>cutting hard</td>
</tr>
<tr>
<td>350</td>
<td>dilepton, no tag</td>
<td>ATLAS</td>
<td>1.0</td>
<td>arXiv:1202.3389</td>
<td>(M_{reco})</td>
<td>(S/\sqrt{S+B}) cut optimistion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b' \to Wt)</td>
</tr>
<tr>
<td>495</td>
<td>multi-lepton</td>
<td>CMS</td>
<td>1.0</td>
<td>CMS PAS EXO-11-036</td>
<td>(N_{jets})</td>
<td>SS dil + trilepton</td>
</tr>
<tr>
<td>480</td>
<td>l+jets</td>
<td>ATLAS</td>
<td>1.0</td>
<td>arXiv:1202.6540</td>
<td>(N_{jets}) (N_W)</td>
<td>semi-boosted (W)</td>
</tr>
<tr>
<td>450</td>
<td>SS leptons</td>
<td>ATLAS</td>
<td>1.0</td>
<td>arXiv:1202.5520</td>
<td>MET and (H_T)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(T \to tA_0)</td>
</tr>
<tr>
<td>~400 ((A_0 < 150))</td>
<td>l+jets</td>
<td>ATLAS</td>
<td>1.0</td>
<td>Phys.Rev.Lett.108 (2012) 041805</td>
<td>counting limits in (A_0) vs (m_T)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(T \to Zt (FCNC))</td>
</tr>
<tr>
<td>475</td>
<td>(\geq 3) lep</td>
<td>ATLAS</td>
<td>1.0</td>
<td>Phys.Rev.Lett.107 (2011) 271802</td>
<td>energy excl. leading 2 jets+ 2 lep</td>
<td></td>
</tr>
</tbody>
</table>
NO EXCESSES... LIMIT PLOTS

ATLAS
Approx. NNLO pred. ± 1 s.d.
- 68% C.L. observed limit
- 95% C.L. expected limit
- Expected limit ± 1 s.d.
- Expected limit ± 2 s.d.

CDF excluded
\(t' \) mass [GeV]
10 250 300 350 400 450 500

\(\int L dt = 1.04 \text{ fb}^{-1} \)
\(\sqrt{s} = 7 \text{ TeV} \)

CMS preliminary
CL_{10}+jets (4.6 fb^{-1}), e+jets (4.7 fb^{-1})
\(\sqrt{s} = 7 \text{ TeV} \)

- observed 95% C.L.
- expected
- a̸(1) expected
- a̸(2) expected
- σ_{T} Theory

\(\sigma \times Br(\tau \rightarrow \ell \nu) [pb] \)
\(\sigma (pp \rightarrow t\bar{t}) [pb] \)
\(\sigma (pp \rightarrow \tau \ell) [pb] \)

ATLAS Preliminary
L dt = 1.04 \text{ fb}^{-1} 95% C.L.
- NNLO from HATHOR
- and ± 1 s.d. uncertainty
- Median Expected Limit
- Observed Limit

σ × Br(t→Wtq)[pb]
σ (pp→tTB)[pb]

ATLAS
\(M_{T} \) [GeV/c^2]
300 320 340 360 380 400 420 440 460 480 500

ATLAS Preliminary
L dt = 1.04 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}
15% C.L. Exclusions:
- Expected: \(m_{\tau} = 460 \pm 80 \text{ GeV/c}^{2}, \sigma_{\tau \rightarrow b \bar{b}} = 0.5 \pm 0.05 \text{ pb} \)
- Observed: \(m_{\tau} = 460 \pm 80 \text{ GeV/c}^{2}, \sigma_{\tau \rightarrow b \bar{b}} = 0.47 \) pb

CMS Preliminary
1.14 fb^{-1} \sqrt{s} = 7 \text{ TeV}

\(L dt = 1.04 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV} \)

CMS 2011 Preliminary
1.14 fb^{-1} \sqrt{s} = 7 \text{ TeV}

\(\int L dt = 1.04 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV} \)

16/03/2012 Moriond QCD Alison Lister
t’t’ → WbWb

1 fb⁻¹

How
- L+jets + ≥1 b-tag
- Reconstruct ‘top’ mass
 - Merge bins (<5% uncert.)
- 1D fit to 4 distributions
 - =3 jet as control region
 - 13 ‘profiled’ parameters
- Total of 35 nuisance parameters

m_{t’} > 404 GeV

CMS preliminary

4.7 fb⁻¹

How
- L+jets + ≥1 b-tag
- Reconstruct ‘top’ mass + HT
- Fit each variable as 1D PDF
 - Extract S/B for bin
- Sort by S/B + merge (<20% uncert.)
- 1D fit
 - 5 ‘profiled’ parameters

m_{t’} > 460 GeV
\[t't' \rightarrow Wq\bar{W}\bar{q} \]

- **Dilepton**
- **Reconstruct ‘top’ mass**
 - Solve 2ν assuming boosted W
- **Cut in** \(M_\text{reco} \) vs \(H_T \)
 - Best S/B (per \(t' \) mass point)
- **1D fit**
- **No ‘profiling’**

\[m_{t'} > 350 \text{ GeV} \]

\[m_{t'} > 552 \text{ GeV} \]

How

1 fb^{-1}

4.7 fb^{-1}

16/03/2012 Moriond QCD Alison Lister

arXiv:1202.3389

No note
How

• 1 lepton + MET + ≥6 jets
• Reconstruct ‘top’ mass
 • Solve 2ν assuming boosted W
• Use semi-boosted W-boson
 • Decay products become collimated ($\sim M_W$)
• Count # W and # jets

$m_{b'} > 480$ GeV

How

• SS dilepton + trilepton
• Low background
• Cut & count in signal region

$m_{b'} > 495$ GeV

CMS-PAS-EXO-11-036
SAME-SIGN TOP + 4^{TH} GEN B QUARKS

What
• Look for tt or \bar{tt} production
 • Low mass Z' production
• Look for $BB\rightarrow WtWt$

How
• 2 Same-sign leptons + ≥2 jets + large MET
• Use MET and HT distributions

$m_{b'} > 450$ GeV

$\sigma(Z' = 100 \text{ GeV}) < 2.0$ pb @95%CL
$\sigma(Z' = 200 \text{ GeV}) < 1.4$ pb @95%CL

16/03/2012 Moriond QCD Alison Lister
What
- $\bar{t}t + \text{MET}$
- $\bar{t}t \rightarrow tA_0 \bar{t}A_0$
- A_0 escapes detector so seen as MET

How
- $L+\text{jets}$ selection
- Higher MET cut

ATLAS

Events/30 GeV

<table>
<thead>
<tr>
<th>Events/30 GeV</th>
<th>E^miss [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>350</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>2</td>
</tr>
</tbody>
</table>

ATLAS

A_0 Mass [GeV]

<table>
<thead>
<tr>
<th>A_0 Mass [GeV]</th>
<th>$m(T)$, $m(A_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>350</td>
<td>550</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
</tr>
</tbody>
</table>

FCNC 4th GENERATION TOP

What
• $\text{Tt}\to\text{ZtZt}\to\text{ZZWbWb}$
• At least one leptonic Z

How
• ≥ 3 leptons (2 OS make a Z) + ≥ 2 jets
• $R_T = \text{Total transverse energy jets + leptons (excluding highest 2 j and 2 l)} > 80 \text{ GeV}$

$m_T > 475 \text{ GeV}$

We have come a long way in 2 years of LHC running! Many precision top measurements (and direct searches) Most results constrain the phase-space of new physics But there is a lot more space to explore…
BACKUP
CDF A_{FB}
CDF A_{FB}
What
• T (or t’) and B (or b’)
 • Prime usually refers to sequential SM
• Pair production or single production
• Mechanism and cross section depend on nature of quarks (scalar, vector-like, charge, ...)
• Searches for
 • T->Wb, T->Zt, T->tA_0
 • B->Wt, B->Zb

How
• Complicated final states
• Mostly with bosons
$t't' \rightarrow Wb\bar{W}b$

What
- Same as ATLAS search

How
- L+jets channel
- Use 2D: Mass vs HT
 - Sort by S/B (fitted with 1D PDFs)
 - Merge bins until uncertainties < 20%

$m_{t'} > 560 \text{ GeV} \@ 95\% \text{ CL}$
SAME-SIGN TOP + 4TH GEN B QUARKS

What
• Look for \(tt\) or \(tb\overline{t}b\overline{t}\) production
• Low mass \(Z'\) production
• Look for \(BB\rightarrow WtWt\)

How
• 2 Same-sign leptons + \(\geq 2\) jets + large MET
• Use MET and HT distributions

\[\sigma (Z' = 100 \text{ GeV}) < 2.0 \text{ pb} \ @ 95\% \text{ CL} \]

\[\sigma (Z' = 200 \text{ GeV}) < 1.4 \text{ pb} \ @ 95\% \text{ CL} \]

\(m_{b'} > 450 \text{ GeV} @ 95\% \text{ CL}\)
SYSTEMATIC UNCERTAINTIES IN TOP PHYSICS

Many

• ~35 total
• Example of 4th generation t’ search

<table>
<thead>
<tr>
<th>Source</th>
<th>Normalization</th>
<th>Shape</th>
<th>Fitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>tt cross section</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>tt fragmentation model</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>tt NLO MC generator</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Top quark mass</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Initial state QCD radiation</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Final state QCD radiation</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>W+jets normalization</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Ratio of $W+\geq4$ jets and $W+3$ jets normalizations</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>W+jets matching/factorization scales</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Z+jets cross section</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Single top cross section</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Diboson cross section</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>QCD multi-jet normalization (e+jets)</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>QCD multi-jet normalization (μ+jets)</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>QCD multi-jet shape (e+jets)</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>QCD multi-jet shape (μ+jets)</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Electron identification and trigger efficiency</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Muon identification and trigger efficiency</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Jet reconstruction efficiency</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Jet energy scale (inclusive jets)</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>b-quark jet energy scale</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>E_T^{miss} modeling</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>b- and c-quark tagging efficiency</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Light-quark tagging efficiency</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Hardware problem modeling</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Luminosity</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>