Searches for New Physics in Top Events at the Tevatron

Andreas Jung (Fermilab) for the CDF & DØ collaboration

Rencontres de Moriond QCD and High Energy Interactions
March 10-17, 2012, La Thuile, Italy
Searches for New Physics in Top Events at Tevatron

A. Jung

Thanks to the Accelerator Division!

- DØ Run II Integrated Luminosity:
- Initial luminosities: $3 - 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- Data taking ended 30th September 2011

The Tevatron

Main Injector & Recycler

p \rightarrow 1.96 TeV $\rightarrow \bar{p}$

A. Jung

Searches for New Physics in Top Events at Tevatron
Top is the heaviest fundamental particle discovered so far (Fermilab 1995):
\[m_{\text{top}} = 173.2 \pm 0.9 \text{ GeV/c}^2 \]
- Lifetime: \(\tau \approx 5 \times 10^{-25} \text{ s} \), bare quark
- Charge: \(+\frac{2}{3}e \)
- SM top quark: \(\sim 100\% \) decay into Wb
- Yukawa coupling close to 1
 - Special role in EWSB?
- Top sector is expected to be sensitive to many new physics processes

More talks on top at Tevatron:
See talks by: O.Brandt (top mass), D.Mietlicki (top properties) and B.Wu (single top)
Introduction

- $t\bar{t}$ production and decay:
 - $q\bar{q} \sim 85\%$ and $gg \sim 15\%$
 - Sample classified according to W-decay:
 - dilepton ($\ell\ell$), lepton+jets (l+jets), all jets
 - Compromise between S/B and BR:
 - $\ell\ell$: Small BR $\sim 4\%$, very good S/B
 - l+jets: Large BR $\sim 30\%$, good S/B
 - all jets: Large BR $\sim 46\%$, challenging S/B

Top Pair Branching Fractions

- "alljets" 46\%
- τ+jets 15\%
- μ+jets 15\%
- e+jets 15\%

A. Jung
Searches for New Physics in Top Events at Tevatron
Search for heavy new particle in association with a top quark using 8.7 fb⁻¹:

\[p\bar{p} \rightarrow t + M \rightarrow t + tj \]

\(A_{FB} \) measured at CDF/\(D\bar{\Omega} \) significantly larger than SM, many models explain this by adding a new heavy particle M

Final state: \(e/\mu, \geq 5 \text{ jets, } \geq 1 \text{ b-jet and } E_T \)

Control region: exactly 4 jets (\(\geq 1 \text{ b-jet} \))

Control region: \(\geq 5 \text{ jets (0 b-jet)} \)

Data 8.7 fb⁻¹

Full CDF RunII data set!
top+jet resonances

- Resonance mass m_{tj} is reconstructed using top kinematic reconstruction.
- Likelihood scan for best match to $t\bar{t}$ topology, remaining jets are paired with the t/\bar{t}: m_{tj} is the combination with highest mass.

Limits on $t\bar{t} + j$ production as a function of resonance mass M:

Data are consistent with SM.

Cross-section upper limits: 0.61 pb to 0.02 pb as a function of the mass.
Resonance mass m_{tj} is reconstructed using top kinematic reconstruction.

Likelihood scan for best match to $t\bar{t}$ topology, remaining jets are paired with
the t/\bar{t}: m_{tj} is the combination with highest mass.

Convert limits on top+jet resonance to exclusion of specific models.

Excluded region in mass-coupling space for two specific models
(M part of a new singlet or triplet)
Search for a narrow $t\bar{t}$ resonance decaying into lepton+jets final state
Many models (KK excitations of gluons/Z bosons, axigluons, strong dynamics, etc.) predict heavy neutral gauge bosons
Final state: e/μ, ≥ 3 jets, ≥ 1 b-jet and E_T

No observation of narrow resonance, but slight excess (2 s.d.) of events around 950 GeV/c2, best fit yields $\sigma \cdot BR(M_X) = 0.10 \pm 0.05$ pb
Absence of narrow resonance allows limits for the NLO production cross section of a topcolor Z' boson.

Intrinsic width set to:

$$\Gamma_X = 0.012 M_X$$

Assume $\text{BR}(Z' \rightarrow t\bar{t}) = 100\%$
Studies show that dark matter candidate can be produced in association with a single top: $p\bar{p} \rightarrow t + D \rightarrow q\bar{q}'b + \not{E}_T$ [Phys. Rev. D 84, 074025 (2011)]

- Final state: 3 jets, ≥1 b-jet and \not{E}_T
- Dark matter signal is expected to contribute significantly at high \not{E}_T

Control region (identified lepton):

Signal region:
First search for the production of DM in association with a single top quark
95% C.L. upper cross-section limit is about 0.5 pb for DM mass of 0 – 150 GeV/c²

Data are consistent with SM
Search for boosted tops in a sample of high transverse momentum jets using 6 fb$^{-1}$
Substructure of high transverse momentum objects (jets) has not been studied extensively at Tevatron
Decay products of top collimated into one single massive jet
Estimate background by data-driven methods
Predicted top cross-section (MSTW2008NNLO): $p_T > 400$ GeV/c of $4.55^{+0.50}_{-0.41}$ fb

E_T significance with at least one jet with $p_T > 400$ GeV/c2

Top cross-section limit (95% C.L.) for $p_T > 400$ GeV/c: 38 fb
Search for pair production of massive object, upper limit of 20 fb (95% C.L.)
Search for a time dependent tt cross section

Standard Model Extension (SME): adds terms for Lorentz Invariance violation (LIV) to the matrix element:

$$ |\mathcal{M}_{\text{SME}}|^2 = PFF + (\delta P_p)FFF + (\delta P_v)FFF + P(\delta F)\bar{F} + P\bar{F}(\delta F). $$

$$ \sigma(t) \approx \sigma_{\text{ave}} [1 + f_{\text{SME}}(t)] $$

Reference:

[D. Colladay and V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998)]
[V.A. Kostelecky, Phys. Rev. D 69, 105009 (2004)]

1 Solar day ≈ 0.997 sidereal days

SME predicts cross section dependence on sidereal time (relative to fixed stars) as the orientation of the detector changes with the rotation of the earth.

c_{L(R)} are different components of SME matrices.
Searches for New Physics in Top Events at Tevatron

A. Jung

No indication for time dependence of $t\bar{t}$ cross-section.
First constraints on LIV in top sector (and for a bare quark)
Lorentz Invariance Violation

- Use lepton+jets tt selection with: ≥ 4 jets, exactly one b-tag and \not{E}_T
- Other ingredients: 'Timestamp' of data at production, signal fraction f_s
- Ratio R_i expected to be flat in SM, i.e. no time dependence
- c_U (right-handed) and c_Q (left-handed)

TABLE IV: Limits on SME coefficients at the 95% C.L., assuming $(c_{Q})_{\mu\nu} \equiv 0$.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value ± Stat. ± Sys.</th>
<th>95% C.L. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(c_U)_{XX33}$</td>
<td>0.10 ± 0.09 ± 0.02</td>
<td>[-0.08, +0.27]</td>
</tr>
<tr>
<td>$(c_U)_{YY33}$</td>
<td>-0.10 ± 0.09 ± 0.02</td>
<td>[-0.27, +0.08]</td>
</tr>
<tr>
<td>$(c_U)_{XY33}$</td>
<td>0.04 ± 0.09 ± 0.01</td>
<td>[-1.14, +0.22]</td>
</tr>
<tr>
<td>$(c_U)_{XZ33}$</td>
<td>-0.14 ± 0.07 ± 0.02</td>
<td>[-0.28, +0.01]</td>
</tr>
<tr>
<td>$(c_U)_{YZ33}$</td>
<td>0.01 ± 0.07 ± <0.01</td>
<td>[-0.13, +0.14]</td>
</tr>
</tbody>
</table>

TABLE III: Limits on SME coefficients at the 95% C.L., assuming $(c_{Q})_{\mu\nu} \equiv 0$.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value ± Stat. ± Sys.</th>
<th>95% C.L. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(c_Q)_{XX33}$</td>
<td>-0.12 ± 0.11 ± 0.02</td>
<td>[-0.34, +0.11]</td>
</tr>
<tr>
<td>$(c_Q)_{YY33}$</td>
<td>0.12 ± 0.11 ± 0.02</td>
<td>[-0.11, +0.34]</td>
</tr>
<tr>
<td>$(c_Q)_{XY33}$</td>
<td>-0.04 ± 0.11 ± 0.01</td>
<td>[-0.26, +0.18]</td>
</tr>
<tr>
<td>$(c_Q)_{XZ33}$</td>
<td>0.15 ± 0.08 ± 0.02</td>
<td>[-0.01, +0.31]</td>
</tr>
<tr>
<td>$(c_Q)_{YZ33}$</td>
<td>-0.03 ± 0.08 ± 0.01</td>
<td>[-0.19, +0.12]</td>
</tr>
</tbody>
</table>

No indication for time dependence of tt cross-section. First constraints on LIV in top sector (and for a bare quark)
Presented searches in top events at the Tevatron:

- CDF and DØ continue to provide unique results in top sector
- More analyses using final data sample will come soon
- Stay tuned...

More results in the top sector:

- Search for new physics in top+MET in all-hadronic tops (5.7 fb⁻¹)
 (arxiv:1107.3574 PRL107 191803)

- Search for a Fourth Generation t' Quark (5.3 fb⁻¹)

- Search for Anomalous Wtb Couplings in Single Top Quark Production (5.4 fb⁻¹)
 see Talk on Friday by B. Wu
Summary

• Top results by CDF:
 http://www-cdf.fnal.gov/physics/new/top/top.html

• Top results by DØ:
 http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

Thank you!
Questions?
The Experiments: CDF & DØ

- **General purpose 4π detectors:**
 - **Tracker:** Detection and momentum measurement for charged particles
 - **Calorimeter:** Identification and energy measurement of jets and electrons
 - **Muon system:** Identification and momentum measurement of muons
ttbar cross section

- tt pair production tests QCD while the decaying system properties can be used as an electro-weak laboratory to search for new physics.

A recipe:
- \(l + 1,2 \) jets as control, 3 and \(\geq 4 \) jet bins for measurement.
- Require at least one jet as a b-jet using a NN-based tagger.
- Require an isolated lepton and large missing transverse energy.
- Largest physics background: W/Z+jets; include di-boson, single-top.
- Simulate most of SM backgrounds, include NLO/LO scale factors.
- Multi-jet background from data
top+jet resonances

- Control region (≥ 5jets, 0b-jets):

![Control region graph]

TABLE I: Impact of systematic uncertainties on each background source and an example signal of 500 GeV in the signal region.

<table>
<thead>
<tr>
<th>Systematic</th>
<th>$t\bar{t}$</th>
<th>W+jets</th>
<th>Total</th>
<th>M (500 GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>550.55</td>
<td>78.64</td>
<td>669.17</td>
<td>339.69</td>
</tr>
<tr>
<td>JES</td>
<td>17%</td>
<td>15%</td>
<td>16%</td>
<td>9%</td>
</tr>
<tr>
<td>Radiation</td>
<td>6%</td>
<td>-</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Q^2</td>
<td>-</td>
<td>19%</td>
<td>2%</td>
<td>-</td>
</tr>
<tr>
<td>Nvtx</td>
<td>3%</td>
<td>2%</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>$t\bar{t}$ Generator</td>
<td>6%</td>
<td>-</td>
<td>5%</td>
<td>-</td>
</tr>
<tr>
<td>Normalization</td>
<td>10%</td>
<td>30%</td>
<td>12%</td>
<td>-</td>
</tr>
<tr>
<td>Total Uncertainty</td>
<td>22%</td>
<td>38%</td>
<td>21%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Event selection for LIV based on cross section measurement in lepton+jets:

- Isolated lepton $p_T > 20\text{GeV/c}$
- $E_T(e) > 20\text{ GeV}, E_T(\mu) > 25\text{ GeV}$
- 4 jets $p_T > 20\text{ GeV/c}, p_T^{\text{lead.jet}} > 40\text{ GeV/c}$
- $|\eta(\text{jet})| < 2.5$ and at least 1 b-tag
Search for a fourth generation t' quark in lepton+jets channel

Exclude at 95% C.L. $t't'$ production for masses below 285 GeV