Drell-Yan lepton pair production: transverse-momentum resummation with leptonic variables dependence

Giancarlo Ferrera
giancarlo.ferrera@mi.infn.it

Università di Milano
Outline

1. Drell-Yan transverse-momentum (q_T) distribution
2. DY q_T resummation at full NNLL+NLO
3. DY q_T resummation with leptonic variables dependence
4. Conclusions
Motivations

The Drell-Yan process [Drell,Yan(’70)] is a benchmark process in hadron collider physics. Its study is well motivated:

- Large production rates and clean experimental signatures.
- Constraint for fits of PDFs.
- q_T spectrum: important for M_W measurement and Beyond the Standard Model analysis.
- Test of perturbative QCD predictions.

The above reasons and precise experimental data demands for accurate theoretical predictions \Rightarrow computation of higher-order QCD corrections.
Motivations

The Drell-Yan process [Drell,Yan(’70)] is a benchmark process in hadron collider physics. Its study is well motivated:

- Large production rates and clean experimental signatures.
- Constraint for fits of PDFs.
- q_T spectrum: important for M_W measurement and Beyond the Standard Model analysis.
- Test of perturbative QCD predictions.

The above reasons and precise experimental data demands for accurate theoretical predictions \Rightarrow computation of higher-order QCD corrections.
The Drell-Yan q_T distribution

$$h_1(p_1) + h_2(p_2) \rightarrow V(M) + X \rightarrow \ell_1 + \ell_2 + X$$

where $V = \gamma^*, Z^0, W^\pm$ and $\ell_1 \ell_2 = \ell^+ \ell^-, \ell \nu_\ell$

QCD factorization:

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a, b} \int_0^1 dx_1 \int_0^1 dx_2 \ f_a/h_1(x_1, \mu_F^2) \ f_b/h_2(x_2, \mu_F^2) \ \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R, \mu_F^2).$$

The standard fixed-order QCD perturbative expansions gives:

$$\int_0^{Q_T^2} dq_T^2 \ \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim 1 + \alpha_S \left[c_{12} \log^2(M^2/Q_T^2) + c_{11} \log(M^2/Q_T^2) + c_{10}(Q_T) \right]$$

$$+ \alpha_S^2 \left[c_{24} \log^4(M^2/Q_T^2) + \cdots + c_{21} \log(M^2/Q_T^2) + c_{20}(Q_T) \right] + O(\alpha_S^3)$$

Fixed order calculation reliable only for $q_T \sim M_V$

For $q_T \rightarrow 0$, $\alpha_S^n \log^m(M^2/q_T^2) \gg 1$: need for resummation of logarithmic corrections.
The Drell-Yan q_T distribution

$$h_1(p_1) + h_2(p_2) \rightarrow V(M) + X \rightarrow \ell_1 + \ell_2 + X$$

where $V = \gamma^*, Z^0, W^\pm$ and $\ell_1 \ell_2 = \ell^+ \ell^-, \ell \nu_{\ell}$

QCD factorization:

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a, b} \int_0^1 dx_1 \int_0^1 dx_2 \ f_a/h_1(x_1, \mu_F^2) \ f_b/h_2(x_2, \mu_F^2) \ \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$$

The standard fixed-order QCD perturbative expansions gives:

$$\int_0^{Q_T^2} dq_T^2 \ \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim 1 + \alpha_S \left[c_{12} \log^2(M^2/Q_T^2) + c_{11} \log(M^2/Q_T^2) + c_{10}(Q_T) \right]$$

$$+ \alpha_S^2 \left[c_{24} \log^4(M^2/Q_T^2) + \cdots + c_{21} \log(M^2/Q_T^2) + c_{20}(Q_T) \right] + O(\alpha_S^3)$$

Fixed order calculation reliable only for $q_T \sim M_V$

For $q_T \rightarrow 0$, $\alpha_S^m \log^m(M^2/q_T^2) \gg 1$: need for resummation of logarithmic corrections.
The Drell-Yan q_T distribution

\[h_1(p_1) + h_2(p_2) \to V(M) + X \to \ell_1 + \ell_2 + X \]

where \(V = \gamma^*, Z^0, W^\pm \) and \(\ell_1 \ell_2 = \ell^+ \ell^-, \ell \nu \)

QCD factorization:

\[
\frac{d\sigma}{dq_T^2}(q_T,M,s) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T,M,\hat{s};\alpha_S,\mu_R^2,\mu_F^2).
\]

The standard fixed-order QCD perturbative expansions gives:

\[
\int_0^{Q_T^2} dq_T^2 \frac{d\hat{\sigma}_{q\bar{q}}}{dq_T^2} \sim 1 + \alpha_S \left[c_{12} \log^2(M^2/q_T^2) + c_{11} \log(M^2/q_T^2) + c_{10}(Q_T) \right]
\]

\[+ \alpha_S^2 \left[c_{24} \log^4(M^2/q_T^2) + \cdots + c_{21} \log(M^2/q_T^2) + c_{20}(Q_T) \right] + \mathcal{O}(\alpha_S^3) \]

Fixed order calculation reliable only for \(q_T \sim M_V \)

For \(q_T \to 0, \alpha_S^n \log^m(M^2/q_T^2) \gg 1: \text{need for resummation of logarithmic corrections.} \)
State of the art: transverse-momentum \((q_T)\) resummation

- The method to perform the resummation of the large logarithms of \(q_T\) is known

 [Dokshitzer, Diakonov, Troian ('78)], [Parisi, Petronzio ('79)],
 [Kodaira, Trentadue ('82)], [Altarelli et al. ('84)],
 [Collins, Soper, Sterman ('85)], [Catani, de Florian, Grazzini ('01)]
 [Catani, Grazzini ('10)]

- Various phenomenological studies of the vector boson transverse momentum distribution exist

 [Balasz, Qiu, Yuan ('95)], [ResBos: Balasz, Yuan, Nadolsky et al.], [Ellis et al. ('97)], [Kulesza et al. ('02)]

- Recently various results for transverse momentum resummation in the framework of Effective Theories appeared

 [Gao, Li, Liu ('05)], [Idilbi, Ji, Yuan ('05)], [Mantry, Petriello ('10)],
 [Becher, Neubert ('10)], [García, Idibli, Scimemi ('11)].
Transverse momentum resummation in pQCD

\[\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{\text{res}}}{dq_T^2} + \frac{d\hat{\sigma}^{\text{fin}}}{dq_T^2}; \]

\[\int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{\text{res}}}{dq_T^2} \right]_{Q_T \to 0} f.o. \]

\[\int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{\text{fin}}}{dq_T^2} \right]_{Q_T \to 0} f.o. = 0 \]

Resummation holds in impact parameter space: \(q_T \ll M \Leftrightarrow M_b \gg 1, \log M/q_T \gg 1 \Leftrightarrow \log M_b \gg 1 \)

In the Mellin moments (\(f_N \equiv \int_0^1 f(x)x^{N-1}dx \)) space we have the exponentiated form:

\[\mathcal{W}_N(b, M) = \mathcal{H}_N(\alpha_S) \times \exp \left\{ G_N(\alpha_S, L) \right\} \]

where

\[g_N(\alpha_S, L) = g^{(1)}_N(\alpha_S L) + g^{(2)}_N(\alpha_S L) + \frac{\alpha_S}{\pi} g^{(3)}_N(\alpha_S L) + \cdots; \quad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}_N^{(2)} + \cdots \right] \]

LL (\(\sim \alpha_S^n L^{n+1} \)): \(g^{(1)}_N, (\sigma^{(0)}) \); NLL (\(\sim \alpha_S^n L^n \)): \(g^{(2)}_N, \mathcal{H}_N^{(1)} \); NNLL (\(\sim \alpha_S^n L^{n-1} \)): \(g^{(3)}_N, \mathcal{H}_N^{(2)} \);

NLL and NNLL respectively matched with “finite” part at: \(\alpha_S \) (LO) and \(\alpha_S^2 \) (NLO)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[\ln(M^2 b^2) \rightarrow \tilde{L} \equiv \ln(Q^2 b^2 + 1) \Rightarrow \exp \left\{ G_N(\alpha_S, \tilde{L}) \right\} \bigg|_{b=0} = 1 \Rightarrow \int_0^{\tilde{L}} dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{(N)NLL+(N)LO} = \hat{\sigma}^{(\text{tot})}_{(N)NLO}; \]
Transverse momentum resummation in pQCD

\[
\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2} ; \quad \int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} \right]_{Q_T \to 0} f.o. 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\
\int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2} \right]_{Q_T \equiv 0} = 0
\]

Resummation holds in impact parameter space: \(q_T \ll M \leftrightarrow Mb \gg 1 \), \(\log M/q_T \gg 1 \leftrightarrow \log Mb \gg 1 \)

In the Mellin moments \((f_N \equiv \int_0^1 f(x)x^{N-1}dx) \) space we have the exponentiated form:

\[
\mathcal{W}_N(b, M) = \mathcal{H}_N(\alpha_S) \times \exp \left\{ G_N(\alpha_S, L) \right\} \quad \text{where} \quad L \equiv \log(M^2 b^2)
\]

\[
g_N(\alpha_S, L) = L g_1(\alpha_S L) + g_N^{(2)}(\alpha_S L) + \frac{\alpha_S}{\pi} g_N^{(3)}(\alpha_S L) + \cdots ; \quad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}_N^{(2)} + \cdots \right]
\]

LL (\(\sim \alpha_S^n L^{n+1} \)): \(g_1^{(1)} \), \((\sigma^{(0)}) \); NLL (\(\sim \alpha_S^n L^n \)): \(g_N^{(2)}, \mathcal{H}_N^{(1)} \); NNLL (\(\sim \alpha_S^n L^{n-1} \)): \(g_N^{(3)}, \mathcal{H}_N^{(2)} \);

NLL and NNLL respectively matched with "finite" part at: \(\alpha_S \) (LO) and \(\alpha_S^2 \) (NLO)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[
\ln(M^2 b^2) \to \tilde{L} \equiv \ln(Q^2 b^2 + 1) \Rightarrow \exp \left\{ G_N(\alpha_S, \tilde{L}) \right\}_{b=0} = 1 \Rightarrow \int_0^{\infty} dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{(N)\text{NLL} + (N)\text{LO}} = \hat{\sigma}^{(\text{tot})}_{(N)\text{NLO}}
\]
Transverse momentum resummation in pQCD

\[\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \quad \int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} \right]_{Q_T \to 0} = 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \]

Resummation holds in impact parameter space: \(q_T \ll M \iff Mb \gg 1, \log M/q_T \gg 1 \iff \log Mb \gg 1 \)

\[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \frac{b}{2} J_0(bq_T) \mathcal{W}(b, M), \]

In the Mellin moments \(f_N \equiv \int_0^1 f(x)x^{N-1}dx \) space we have the exponentiated form:

\[\mathcal{W}_N(b, M) = \mathcal{H}_N(\alpha_S) \times \exp \{ G_N(\alpha_S, L) \} \quad \text{where} \quad L \equiv \log(M^2 b^2) \]

\[g_N(\alpha_S, L) = \frac{\alpha_S}{\pi} g_N^{(2)}(\alpha_S L) + \cdots; \quad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}_N^{(2)} + \cdots \right] \]

LL \(\sim \alpha_S^n L^{n+1} \): \(g^{(1)} \), \(\sigma^{(0)} \); NLL \(\sim \alpha_S^n L^n \): \(g_N^{(2)} \), \(\mathcal{H}_N^{(1)} \); NNLL \(\sim \alpha_S^n L^{n-1} \): \(g_N^{(3)} \), \(\mathcal{H}_N^{(2)} \);

NLL and NNLL respectively matched with “finite” part at: \(\alpha_S \) (LO) and \(\alpha_S^2 \) (NLO)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[\ln(M^2 b^2) \to \tilde{L} \equiv \ln(Q^2 b^2 + 1) \Rightarrow \exp \{ G_N(\alpha_S, \tilde{L}) \} \bigg|_{b=0} = 1 \Rightarrow \int_0^\infty dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{(N)\text{NLL}+(N)\text{LO}} = \hat{\sigma}^{(\text{tot})}_{(N)\text{NLO}}; \]
Transverse momentum resummation in pQCD

\[
\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \quad \int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} \right] f.o. \quad Q_T \sim 0 \quad 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\
\int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2} \right] f.o. \quad Q_T \equiv 0 \quad 0
\]

Resummation holds in impact parameter space: \(q_T \ll M \Leftrightarrow Mb \gg 1 \), \(\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1 \)

\[
\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^{\infty} db \frac{b}{2} J_0(bq_T) \mathcal{W}(b, M),
\]

In the Mellin moments \(f_N \equiv \int_0^1 f(x)x^{N-1}dx \) space we have the exponentiated form:

\[
\mathcal{W}_N(b,M) = \mathcal{H}_N(\alpha_S) \times \exp \{ G_N(\alpha_S, L) \}
\]

where \(L \equiv \log(M^2 b^2) \)

\[
G_N(\alpha_S, L) = L g^{(1)}_N(\alpha_S L) + g^{(2)}_N(\alpha_S L) + \frac{\alpha_S}{\pi} g^{(3)}_N(\alpha_S L) + \cdots; \quad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}^{(1)}_N + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}^{(2)}_N + \cdots \right]
\]

LL \(\sim \alpha_S^n L^{n+1} \): \(g^{(1)} \), \(\sigma^{(0)} \); NLL \(\sim \alpha_S^n L^n \): \(g^{(2)}_N, \mathcal{H}^{(1)}_N \); NNLL \(\sim \alpha_S^n L^{n-1} \): \(g^{(3)}_N, \mathcal{H}^{(2)}_N \);

NLL and NNLL respectively matched with “finite” part at: \(\alpha_S \) (LO) and \(\alpha_S^2 \) (NLO)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[
\ln(M^2 b^2) \rightarrow \tilde{L} \equiv \ln(Q^2 b^2 + 1) \Rightarrow \exp \{ G_N(\alpha_S, \tilde{L}) \} |_{b=0} = 1 \Rightarrow \int_0^{\infty} dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{\text{NLL+LO}} = \hat{\sigma}^{(\text{tot})}_{\text{NLO}};
\]
Transverse momentum resummation in pQCD

\[
\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \quad \int_0^{Q^2_T} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} \right]_{Q_T \rightarrow 0} \sim 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q^2_T} \\
\int_0^{Q^2_T} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2} \right]_{Q_T \equiv 0} = 0
\]

Resummation holds in impact parameter space: \(q_T \ll M \Leftrightarrow Mb \gg 1, \log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1 \)

\[
\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^{\infty} db \frac{b}{2} J_0(bq_T) \mathcal{W}(b, M),
\]

In the Mellin moments (\(f_N \equiv \int_0^1 f(x)x^{N-1}dx \)) space we have the exponentiated form:

\[
\mathcal{W}_N(b, M) = \mathcal{H}_N(\alpha_s) \times \exp \left\{ G_N(\alpha_s, L) \right\} \quad \text{where} \quad L \equiv \log(M^2 b^2)
\]

\[
G_N(\alpha_s, L) = L \ g^{(1)}_N(\alpha_s L) + g^{(2)}_N(\alpha_s L) + \frac{\alpha_s}{\pi} g^{(3)}_N(\alpha_s L) + \cdots; \quad \mathcal{H}_N(\alpha_s) = \sigma^{(0)}(\alpha_s, M) \left[1 + \frac{\alpha_s}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_s}{\pi} \right)^2 \mathcal{H}_N^{(2)} + \cdots \right]
\]

LL (\(\sim \alpha_S^n L^{n+1} \)): \(g^{(1)}, (\sigma^{(0)}) \); NLL (\(\sim \alpha_S^n L^n \)): \(g^{(2)}_N, \mathcal{H}_N^{(1)} \); NNLL (\(\sim \alpha_S^n L^{n-1} \)): \(g^{(3)}_N, \mathcal{H}_N^{(2)} \);

NLL and NNLL respectively matched with “finite” part at: \(\alpha_S (\text{LO}) \) and \(\alpha_S^2 (\text{NLO}) \)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[
\ln(M^2 b^2) \rightarrow \tilde{L} \equiv \ln(Q^2 b^2 + 1) \Rightarrow \exp \left\{ G_N(\alpha_s, \tilde{L}) \right\} \bigg|_{b=0} = 1 \Rightarrow \int_0^{\infty} dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{(N)\text{NLL}+(N)\text{LO}} = \hat{\sigma}^{(\text{tot})}_{(N)\text{NLO}};
\]
Transverse momentum resummation in pQCD

\[
\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \quad \int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} \right]_{Q_T \to 0} f.o. + \sum_{n} \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} = 0
\]

Resummation holds in impact parameter space: \(q_T \ll M \Leftrightarrow Mb \gg 1 \), \(\log \frac{M}{q_T} \gg 1 \Leftrightarrow \log Mb \gg 1 \)

\[
\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} = \frac{M^2}{s} \int_0^\infty db \frac{b^2}{2} J_0(bq_T) \mathcal{W}(b,M),
\]

In the Mellin moments \((f_N \equiv \int_0^1 f(x)x^{N-1}dx) \) space we have the exponentiated form:

\[
\mathcal{W}_N(b,M) = \mathcal{H}_N(\alpha_S) \times \exp \left\{ G_N(\alpha_S, L) \right\}
\]

where \(L \equiv \log(M^2 b^2) \)

\[
G_N(\alpha_S, L) = L g^{(1)}(\alpha_S L) + g^{(2)}_N(\alpha_S L) + \frac{\alpha_S}{\pi} g^{(3)}_N(\alpha_S L) + \cdots; \quad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}_N^{(2)} + \cdots \right]
\]

LL (\(\sim \alpha_S^2 L^{n+1} \)): \(g^{(1)} \), \(\sigma^{(0)} \); NLL (\(\sim \alpha_S^2 L^n \)): \(g^{(2)}_N \), \(\mathcal{H}_N^{(1)} \); NNLL (\(\sim \alpha_S^2 L^{n-1} \)): \(g^{(3)}_N \), \(\mathcal{H}_N^{(2)} \);

NLL and NNLL respectively matched with “finite” part at: \(\alpha_S \) (LO) and \(\alpha_S^2 \) (NLO)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[
\ln(M^2 b^2) \to \tilde{L} \equiv \ln(Q^2 b^2 + 1) \Rightarrow \exp \left\{ G_N(\alpha_S, \tilde{L}) \right\} \bigg|_{b=0} = 1 \Rightarrow \int_0^{\infty} dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{(N)\text{NNLL}+(N)\text{LO}} = \hat{\sigma}^{(\text{tot})}_{(N)\text{NLO}};
\]
Transverse momentum resummation in pQCD

\[\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \quad \int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} \right]_{f.o.} \quad Q_T \rightarrow 0 \quad 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \]

Resummation holds in impact parameter space: \(q_T \ll M \Leftrightarrow Mb \gg 1, \log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1 \)

\[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^\infty db \frac{b}{2} J_0(bq_T) \mathcal{W}(b, M), \]

In the Mellin moments \((f_N \equiv \int_0^1 f(x)x^{N-1}dx) \) space we have the exponentiated form:

\[\mathcal{W}_N(b, M) = \mathcal{H}_N(\alpha_S) \times \exp \{ G_N(\alpha_S, L) \} \quad \text{where} \quad L \equiv \log(M^2 b^2) \]

\[G_N(\alpha_S, L) = L g^{(1)}(\alpha_S L) + g^{(2)}_N(\alpha_S L) + \frac{\alpha_S}{\pi} g^{(3)}_N(\alpha_S L) + \cdots \quad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}_N^{(2)} + \cdots \right] \]

LL \(\sim \alpha_S^n L^{n+1} \): \(g^{(1)}, (\sigma^{(0)}) \); NLL \(\sim \alpha_S^n L^n \): \(g^{(2)}_N, \mathcal{H}_N^{(1)} \); NNLL \(\sim \alpha_S^n L^{n-1} \): \(g^{(3)}_N, \mathcal{H}_N^{(2)} \)

NLL and NNLL respectively matched with “finite” part at: \(\alpha_S \) (LO) and \(\alpha_S^2 \) (NLO)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[\ln(M^2 b^2) \rightarrow \tilde{L} \equiv \ln(Q^2 b^2 + 1) \Rightarrow \exp \{ G_N(\alpha_S, \tilde{L}) \} \big|_{b=0} = 1 \Rightarrow \int_0^\infty dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{(N)\text{NLL}+(N)\text{LO}} = \hat{\sigma}^{(\text{tot})}_{(N)\text{NLO}}; \]

Giancarlo Ferrera – Università di Milano
Moriond QCD 2012 – 15/3/12
Transverse momentum resummation in pQCD

\[\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} + \frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2}; \]

\[\int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} \right]_{\text{f.o.}} Q_T \to 0 \sim 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2}, \]

\[\int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{(\text{fin})}}{dq_T^2} \right]_{\text{f.o.}} Q_T \to 0 = 0. \]

Resummation holds in impact parameter space: \(q_T \ll M \Leftrightarrow Mb \gg 1, \quad \log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1 \)

\[\frac{d\hat{\sigma}^{(\text{res})}}{dq_T^2} = \frac{M^2}{\hat{s}} \int_0^{\infty} db \frac{b}{2} J_0(bq_T) W(b, M), \]

In the Mellin moments \((f_N \equiv \int_0^1 f(x)x^{N-1}dx)\) space we have the exponentiated form:

\[W_N(b,M) = \mathcal{H}_N(\alpha_S) \times \exp \left\{ G_N(\alpha_S, L) \right\} \]

where \(L \equiv \log(M^2 b^2) \)

\[G_N(\alpha_S, L) = L g^{(1)}(\alpha_S L) + g_N^{(2)}(\alpha_S L) + \frac{\alpha_S}{\pi} g_N^{(3)}(\alpha_S L) + \cdots; \quad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}_N^{(2)} + \cdots \right] \]

LL (\(\sim \alpha_S^n L^{n+1} \)): \(g^{(1)}, (\sigma^{(0)}) \); NLL (\(\sim \alpha_S^n L^n \)): \(g_N^{(2)}, \mathcal{H}_N^{(1)} \); NNLL (\(\sim \alpha_S^n L^{n-1} \)): \(g_N^{(3)}, \mathcal{H}_N^{(2)} \);

NLL and NNLL respectively matched with “finite” part at: \(\alpha_S \) (LO) and \(\alpha_S^2 \) (NLO)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[\ln(M^2 b^2) \to \tilde{L} \equiv \ln(Q^2 b^2 + 1) \Rightarrow \exp \left\{ G_N(\alpha_S, \tilde{L}) \right\} \bigg|_{b=0} = 1 \Rightarrow \int_0^{\infty} dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{(N)\text{NLL}+(N)\text{LO}} = \hat{\sigma}^{(\text{tot})}_{(N)\text{NLO}}; \]
Transverse momentum resummation in pQCD

\[
\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{\text{(res)}}}{dq_T^2} + \frac{d\hat{\sigma}^{\text{(fin)}}}{dq_T^2} \; ; \; \int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{\text{(res)}}}{dq_T^2} \right]_{\text{f.o.}} \approx 1 + \sum_n \sum_{m=1}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\
\int_0^{Q_T^2} dq_T^2 \left[\frac{d\hat{\sigma}^{\text{(fin)}}}{dq_T^2} \right]_{\text{f.o.}} \approx 0
\]

Resummation holds in impact parameter space: \(q_T \ll M \Leftrightarrow Mb \gg 1, \log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1 \)

\[
\frac{d\hat{\sigma}^{\text{(res)}}}{dq_T^2} = \frac{M^2}{s} \int_0^{\infty} db \frac{b}{2} J_0(bq_T) \mathcal{W}(b, M),
\]

In the Mellin moments \(f_N \equiv \int_0^1 f(x)x^{N-1}dx \) space we have the exponentiated form:

\[
\mathcal{W}_N(b, M) = \mathcal{H}_N(\alpha_S) \times \exp \left\{ G_N(\alpha_S, L) \right\} \quad \text{where} \quad L \equiv \log(M^2b^2)
\]

\[
G_N(\alpha_S, L) = L g^{(1)}(\alpha_S L) + g^{(2)}_N(\alpha_S L) + \frac{\alpha_S}{\pi} g^{(3)}_N(\alpha_S L) + \cdots \quad \mathcal{H}_N(\alpha_S) = \sigma^{(0)}(\alpha_S, M) \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}_N^{(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}_N^{(2)} + \cdots \right]
\]

LL (\(\sim \alpha_S^2 L^{n+1} \)): \(g^{(1)}, (\sigma^{(0)}) \); NLL (\(\sim \alpha_S^n L^n \)): \(g^{(2)}_N, \mathcal{H}_N^{(1)} \); NNLL (\(\sim \alpha_S^n L^{n-1} \)): \(g^{(3)}_N, \mathcal{H}_N^{(2)} \);

NLL and NNLL respectively matched with “finite” part at: \(\alpha_S \) (LO) and \(\alpha_S^2 \) (NLO)

Perturbative unitarity constrain and resummation scale \(Q(\sim M) \):

\[
\ln(M^2b^2) \rightarrow \tilde{L} \equiv \ln(Q^2b^2+1) \Rightarrow \exp \left\{ G_N(\alpha_S, \tilde{L}) \right\} \bigg|_{b=0} = 1 \Rightarrow \int_0^{\infty} dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{(N)\text{NLL}+(N)\text{LO}} = \hat{\sigma}^{(\text{tot})}\left(\text{(N)NLO}\right);
\]
DYqT: q_T-resummation at NNLL+NLO:

Bozzi, Catani, de Florian, G.F., Grazzini arXiv:1007.2351

- We have applied for Drell-Yan transverse-momentum distribution the resummation formalism developed by [Catani, de Florian, Grazzini(’01)] already applied for the case of Higgs boson production [Bozzi, Catani, de Florian, Grazzini(’03, ’06, ’08)].

- We have performed the resummation up to NNLL+NLO. It means that our complete formula includes:
 - NNLL logarithmic contributions to all orders;
 - NNLO corrections (i.e. $O(\alpha_s^2)$) at small q_T;
 - NLO corrections (i.e. $O(\alpha_s^2)$) at large q_T;
 - NNLO result (i.e. $O(\alpha_s^2)$) for the total cross section (upon integration over q_T).

- NLO+PS generators (MC@NLO/POWHEG) reach LL (and part of the NLL)+NLO accuracy.
DYqT: q_T-resummation at NNLL+NLO:

Bozzi, Catani, de Florian, G.F., Grazzini arXiv:1007.2351

- We have applied for Drell-Yan transverse-momentum distribution the resummation formalism developed by [Catani, de Florian, Grazzini ('01)] already applied for the case of Higgs boson production [Bozzi, Catani, de Florian, Grazzini ('03, '06, '08)].

- We have performed the resummation up to NNLL+NLO. It means that our complete formula includes:
 - **NNLL** logarithmic contributions to all orders;
 - **NNLO** corrections (i.e. $O(\alpha_S^2)$) at small q_T;
 - **NLO** corrections (i.e. $O(\alpha_S^2)$) at large q_T;
 - **NNLO** result (i.e. $O(\alpha_S^2)$) for the total cross section (upon integration over q_T).

- NLO+PS generators (MC@NLO/POWHEG) reach LL (and part of the NLL) + NLO accuracy.
DYqT: q_T-resummation at NNLL+NLO:

Bozzi, Catani, de Florian, G.F., Grazzini arXiv:1007.2351

- We have applied for Drell-Yan transverse-momentum distribution the resummation formalism developed by [Catani, de Florian, Grazzini ('01)] already applied for the case of Higgs boson production [Bozzi, Catani, de Florian, Grazzini ('03, '06, '08)].

- We have performed the resummation up to NNLL+NLO. It means that our complete formula includes:
 - **NNLL** logarithmic contributions to all orders;
 - **NNLO** corrections (i.e. $O(\alpha^2_S)$) at small q_T;
 - **NLO** corrections (i.e. $O(\alpha^2_S)$) at large q_T;
 - **NNLO** result (i.e. $O(\alpha^2_S)$) for the total cross section (upon integration over q_T).

- **NLO+PS** generators (MC@NLO/POWHEG) reach LL (and part of the NLL)+NLO accuracy.
Resummed results: \(q_T \) spectrum of \(Z \) boson at the Tevatron

- Uncertainty bands obtained varying \(\mu_R, \mu_F, Q \) independently:
 \[\frac{1}{2} \leq \{ \frac{\mu_F}{m_Z}, \frac{\mu_R}{m_Z}, 2Q/m_Z, \frac{\mu_F}{\mu_R}, Q/\mu_R \} \leq 2 \]
 to avoid large logarithmic contributions
 \(\sim \ln\left(\frac{\mu_F^2}{\mu_R^2}\right), \ln\left(\frac{Q^2}{\mu_R^2}\right) \)
 in the evolution of the parton densities and in the resummed form factor.

- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all \(q_T \).
- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- Good agreement between data and resummed predictions (without any model for non-perturbative effects).

The perturbative uncertainty of the NNLL+NLO results is comparable with the experimental errors.
Resummed results: q_T spectrum of Z boson at the Tevatron

- Uncertainty bands obtained varying μ_R, μ_F, Q independently:
 \[1/2 \leq \left\{ \frac{\mu_F}{m_Z}, \frac{\mu_R}{m_Z}, 2Q/m_Z, \frac{\mu_F}{\mu_R}, \frac{Q}{\mu_R} \right\} \leq 2 \]
 to avoid large logarithmic contributions ($\sim \ln(\mu_F^2/\mu_R^2), \ln(Q^2/\mu_R^2)$) in the evolution of the parton densities and in the the resummed form factor.

- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all q_T.

- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).

- Good agreement between data and resummed predictions (without any model for non-perturbative effects).

The D0 data for the Z q_T spectrum compared with perturbative results.
Resummed results: q_T spectrum of Z boson at the Tevatron

- Uncertainty bands obtained varying μ_R, μ_F, Q independently:
 \[1/2 \leq \{ \mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R \} \leq 2 \]
 to avoid large logarithmic contributions ($\sim \ln(\mu_F^2/\mu_R^2), \ln(Q^2/\mu_R^2)$) in the evolution of the parton densities and in the the resummed form factor.

- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all q_T.

- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).

- Good agreement between data and resummed predictions (without any model for non-perturbative effects).
 The perturbative uncertainty of the NNLL+NLO results is comparable with the experimental errors.

D0 data for the Z q_T spectrum compared with perturbative results.
Resummed results: \(q_T \) spectrum of Z boson at the Tevatron

- Uncertainty bands obtained varying \(\mu_R, \mu_F, Q \) independently:
 \[
 \frac{1}{2} \leq \{ \frac{\mu_F}{m_Z}, \frac{\mu_R}{m_Z}, 2Q/m_Z, \frac{\mu_F}{\mu_R}, \frac{Q}{\mu_R} \} \leq 2
 \]
 to avoid large logarithmic contributions (\(\sim \ln(\frac{\mu_F^2}{\mu_R^2}), \ln(\frac{Q^2}{\mu_R^2}) \)) in the evolution of the parton densities and in the resummed form factor.

- Significant reduction of scale dependence from NLL+LO to NNLL+NLO for all \(q_T \).

- Good convergence of resummed results: NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).

- Good agreement between data and resummed predictions (without any model for non-perturbative effects).

The perturbative uncertainty of the NNLL+NLO results is comparable with the experimental errors.
Resummed results: q_T spectrum of Z boson at the Tevatron

- **NNLL+NLO scale dependence** is $\pm 6\%$ at the peak, $\pm 5\%$ at $q_T = 10$ GeV and $\pm 12\%$ at $q_T = 50$ GeV. For $q_T \geq 60$ GeV the resummed result looses predictivity.

- At large values of q_T, the NLO and NNLL+NLO bands overlap.

- At intermediate values of transverse momenta the scale variation bands do not overlap.

- The resummation improves the agreement of the NLO results with the data.

In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.

NNLL+NLO scale dependence is $\pm 6\%$ at the peak, $\pm 5\%$ at $q_T = 10$ GeV and $\pm 12\%$ at $q_T = 50$ GeV. For $q_T \geq 60$ GeV the resummed result looses predictivity.

- At large values of q_T, the NLO and NNLL+NLO bands overlap.

- At intermediate values of transverse momenta the scale variation bands do not overlap.

- The resummation improves the agreement of the NLO results with the data.

In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.

- At large values of q_T, the NLO and NNLL+NLO bands overlap.

- At intermediate values of transverse momenta the scale variation bands do not overlap.

- The resummation improves the agreement of the NLO results with the data.

In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.

- At large values of q_T, the NLO and NNLL+NLO bands overlap.

- At intermediate values of transverse momenta the scale variation bands do not overlap.

- The resummation improves the agreement of the NLO results with the data.

In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.

- At large values of q_T, the NLO and NNLL+NLO bands overlap.

- At intermediate values of transverse momenta the scale variation bands do not overlap.

- The resummation improves the agreement of the NLO results with the data.

In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.
Resummed results: q_T spectrum of Z boson at the Tevatron

- **NNLL+NLO scale dependence** is $\pm 6\%$ at the peak, $\pm 5\%$ at $q_T = 10 \text{ GeV}$ and $\pm 12\%$ at $q_T = 50 \text{ GeV}$. For $q_T \geq 60 \text{ GeV}$ the resummed result loses predictivity.

- At large values of q_T, the NLO and NNLL+NLO bands overlap.
 At intermediate values of transverse momenta the scale variation bands do not overlap.

- The resummation improves the agreement of the NLO results with the data.
 In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.

![Graph showing q_T spectrum comparison](image)
Resummed results: q_T spectrum of Z boson at the Tevatron

- NNLL+NLO scale dependence is $\pm 6\%$ at the peak, $\pm 5\%$ at $q_T = 10$ GeV and $\pm 12\%$ at $q_T = 50$ GeV. For $q_T \geq 60$ GeV the resummed result loses predictivity.
- At large values of q_T, the NLO and NNLL+NLO bands overlap.
 At intermediate values of transverse momenta the scale variation bands do not overlap.
- The resummation improves the agreement of the NLO results with the data.
 In the small-q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL+NLO band.

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL+NLO, $\mu_R = \mu_F = 2Q = m_Z$.
Non-perturbative effects: q_T spectrum of Z boson at the Tevatron

- Up to now result in a complete perturbative framework.
- Non-perturbative effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$:
 \[\exp\{G_N(\alpha_S, \tilde{L})\} \rightarrow \exp\{G_N(\alpha_S, \tilde{L})\} S_{NP} \]

 - $g_{NP} = 0.8$ GeV2 [Kulesza et al. ('02)]

- With NP effects the q_T spectrum is harder.

Quantitative impact of such NP effects is comparable with perturbative uncertainties.
Non perturbative effects: q_T spectrum of Z boson at the Tevatron

- Up to now result in a complete perturbative framework.
- Non perturbative effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$:
 \[
 \exp\{G_N(\alpha_S, \tilde{L})\} \rightarrow \exp\{G_N(\alpha_S, \tilde{L})\} S_{NP}
 \]
 \[g_{NP} = 0.8 \text{ GeV}^2\] [Kulesza et al. ('02)]

With NP effects the q_T spectrum is harder.
Quantitative impact of such NP effects is comparable with perturbative uncertainties.

D0 data for the Z q_T spectrum.
Non perturbative effects: q_T spectrum of Z boson at the Tevatron

- Up to now result in a complete perturbative framework.
- Non perturbative effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$:
 \[
 \exp\{G_N(\alpha_S, \tilde{L})\} \rightarrow \exp\{G_N(\alpha_S, \tilde{L})\} S_{NP}
 \]
 \[g_{NP} = 0.8 \text{ GeV}^2\] [Kulesza et al. ('02)]
- With NP effects the q_T spectrum is harder.
 Quantitative impact of such NP effects is comparable with perturbative uncertainties.
NEW: q_T-resummation with leptonic variables dependence

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.

We have included the full dependence on the leptonic variables: possible to apply cuts on vector boson and decay products.

To construct the “finite” part we rely on the fully-differential NNLO result from the code DYNNLO [Catani, Cieri, de Florian, Ferrera, Grazzini (’09)].

Calculation implemented in a numerical program which includes spin correlations, γ^*Z interference, finite-width effects and compute distributions in form of bin histograms: analogously to the HRes code (see M. Grazzini talk).
NEW: q_T -resummation with leptonic variables dependence

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.

We have included the full dependence on the leptonic variables: possible to apply cuts on vector boson and decay products.

To construct the “finite” part we rely on the fully-differential NNLO result from the code DYNNLO [Catani, Cieri, de Florian, Ferrera, Grazzini (’09)].

Calculation implemented in a numerical program which includes spin correlations, γ^*Z interference, finite-width effects and compute distributions in form of bin histograms: analogously to the HRes code (see M. Grazzini talk).
NEW: q_T-resummation with leptonic variables dependence

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.

We have included the full dependence on the leptonic variables: possible to apply cuts on vector boson and decay products.

To construct the “finite” part we rely on the fully-differential NNLO result from the code DYNNLO [Catani,Cieri,de Florian,Ferrera,Grazzini(’09)].

Calculation implemented in a numerical program which includes spin correlations, γ^*Z interference, finite-width effects and compute distributions in form of bin histograms: analogously to the HRes code (see M. Grazzini talk).
NEW: q_T-resummation with leptonic variables dependence

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.

- We have included the full dependence on the leptonic variables: possible to apply cuts on vector boson and decay products.
- To construct the “finite” part we rely on the fully-differential NNLO result from the code DYNNLO [Catani, Cieri, de Florian, Ferrera, Grazzini (’09)].

- Calculation implemented in a numerical program which includes spin correlations, γ^*Z interference, finite-width effects and compute distributions in form of bin histograms: analogously to the HRes code (see M. Grazzini talk).
NEW: q_T-resummation with leptonic variables dependence

- Experiments have finite acceptance: important to provide exclusive theoretical predictions.
- Analytic resummation formalism inclusive over soft-gluon emission: not possible to apply selection cuts on final state partons.

We have included the full dependence on the leptonic variables: possible to apply cuts on vector boson and decay products.

To construct the “finite” part we rely on the fully-differential NNLO result from the code DYNNLO [Catani, Cieri, de Florian, Ferrera, Grazzini (’09)].

Calculation implemented in a numerical program which includes spin correlations, $\gamma^* Z$ interference, finite-width effects and compute distributions in form of bin histograms: analogously to the HRes code (see M. Grazzini talk).
NEW: q_T-resummation with leptonic variables dependence

CMS data for the Z q_T spectrum compared with NNLL+NLO result.
Scale variation:
\[1/2 \leq \{ \mu_F/m_Z, \mu_R/m_Z, \mu_F/\mu_R, 2Q/m_Z, Q/\mu_R \} \leq 2 \]

ATLAS data for the Z q_T spectrum compared with NNLL+NLO result.
NEW: q_T-resummation with leptonic variables dependence

ATLAS data for the W q_T spectrum compared with NNLL+NLO result.

Lepton p_T spectrum from W^+ decay.
NNLL+NLO result compared with the NNLO result.
Important spectrum for the measurement of M_W at the LHC.
Conclusions

- **NNLL+NLO DY q_T-resummation** [Bozzi, Catani, de Florian, G.F., Grazzini [arXiv:1007.2351]].
 Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results consistent with the experimental data in a wide region of q_T.

- **NEW**: added full kinematical dependence on the vector boson and on the final state leptons.

- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.

- Perspectives: more accurate comparisons and public version of the codes.
Conclusions

- **NNLL+NLO DY q_T-resummation** [Bozzi, Catani, de Florian, G.F., Grazzini [arXiv:1007.2351]].
 Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results consistent with the experimental data in a wide region of q_T.

- **NEW**: added full kinematical dependence on the vector boson and on the final state leptons.

- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.

- Perspectives: more accurate comparisons and public version of the codes.
Conclusions

- **NNLL+NLO DY q_T-resummation** [Bozzi, Catani, de Florian, G.F., Grazzini [arXiv:1007.2351]].

 Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results consistent with the experimental data in a wide region of q_T.

- **NEW**: added full kinematical dependence on the vector boson and on the final state leptons.

- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.

- Perspectives: more accurate comparisons and public version of the codes.
Conclusions

- **NNLL+NLO DY q_T-resummation** [Bozzi, Catani, de Florian, G.F., Grazzini [arXiv:1007.2351]].
 Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results consistent with the experimental data in a wide region of q_T.

- **NEW**: added full kinematical dependence on the vector boson and on the final state leptons.

- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.

- Perspectives: more accurate comparisons and public version of the codes.
Conclusions

- **NNLL+NLO DY q_T-resummation** [Bozzi, Catani, de Florian, G.F., Grazzini [arXiv:1007.2351]].
 Reduction of scale uncertainties from NLL+LO to NNLL+NLO accuracy. The NNLL+NLO results consistent with the experimental data in a wide region of q_T.

- **NEW**: added full kinematical dependence on the vector boson and on the final state leptons.

- Preliminary comparison with LHC data (implementing experimental cuts): good agreement between data and NNLL+NLO results without any model for Non Perturbative effects.

- Perspectives: more accurate comparisons and public version of the codes.
Back up slides
The q_T resummation formalism

The main distinctive features of the formalism we use: [Catani, de Florian, Grazzini ('01)], [Bozzi, Catani, de Florian, Grazzini ('03, '06, '08)]:

- Resummation performed at partonic cross section level: PDF evaluated at $\mu_F \sim M$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.

- Possible to make prediction without introducing non perturbative effects: Landau singularity of the QCD coupling regularized using a Minimal Prescription [Laenen, Sterman, Vogelsang ('00)], [Catani et al. ('96)].

- Resummed effects exponentiated in a universal Sudakov form factor $G_N(\alpha_S, L)$; process-dependence factorized in the hard scattering coefficient $H_N(\alpha_S)$.

- Perturbative unitarity constrain and resummation scale Q:

 $$\ln \left(\frac{M^2 b^2}{b_0^2} \right) \to \bar{L} \equiv \ln \left(\frac{Q^2 b^2}{b_0^2} + 1 \right) \Rightarrow \exp \{ G_N(\alpha_S, \bar{L}) \} \bigg|_{b=0} = 1 \Rightarrow \int_0^{\infty} dq_T^2 \left(\frac{d\hat{\sigma}}{dq_T^2} \right)_{NLL+LO} = \delta^{(tot)}_{NLO};$$

- avoids unjustified higher-order contributions in the small-b region: no need for unphysical switching from resummed to fixed-order results.
- allows to recover exactly the total cross-section upon integration on q_T
- variations of the resummation scale $Q \sim M$ allows to estimate the uncertainty from higher orders uncalculated logarithmic corrections.
Resummed results: q_T spectrum of Z boson at the Tevatron

- **Left side:** NLL+LO result compared with fixed LO result. Resummation cure the fixed order divergence at $q_T \to 0$.
- **Right side:** NNLL+NLO result compared with fixed NLO result.
- The q_T spectrum is slightly harder at NNLL+NLO accuracy than at NLL+LO accuracy.
- Integral of the NLL+LO (NNLL+NLO) curve reproduce the total NLO (NNLO) cross section to better 1% (check of the code).
Resummed results: q_T spectrum of Z boson at the Tevatron

- Our calculation implements $\gamma^* Z$ interference and finite-width effects. Here we use the narrow width approximation (differences within 1% level).
- Uncertainty bands obtained by performing renormalization and factorization scale variations: $1/2 \leq \{\mu_F/m_Z, \mu_R/m_Z, \mu_F/\mu_R\} \leq 2$, with $Q = m_Z/2$.

 In the region $q_T \lesssim 30$ the NNLL+NLO and NLL+LO bands overlap (contrary to the fixed-order case).
- We observe a significant reduction of scale dependence going from NLL+LO to NNLL+NLO accuracy.
- Suppression of NLL+LO result in the large-q_T region ($q_T \gtrsim 60$ GeV) (strong dependence from the resummation scale, see next plot).

NLL+LO: pdf=MSTW08 NLO, 2-loops α_S

NNLL+NLO: pdf=MSTW08 NNLO, 3-loops α_S
Resummed results: q_T spectrum of Z boson at the Tevatron

- Uncertainty bands obtained by performing resummation scale variations (estimate of higher-order logarithmic contributions): $m_Z/4 \leq Q \leq m_Z$ with $\mu_F = \mu_R = m_Z$.
- The resummation scale dependence at NNLL+NLO (NLL+LO) is about ±5% (±12%) around the peak and ±5% (±16%) in the $q_T \gtrsim 20$ GeV region and it is larger than the renormalization and factorization scale dependence.
- Going from the NLL+LO to the NNLL+NLO calculation the resummation scale dependence is reduced by roughly a factor 2 in the wide region 5 GeV $\lesssim q_T \lesssim 50$ GeV.
Fixed order results: q_T spectrum of Z boson at the Tevatron $\sqrt{s} = 1.8$ TeV

- CDF data: 66 GeV $< M^2 < 116$ GeV,
 $\sigma_{tot} = 248 \pm 11$ pb [CDF Coll. ('00)]
- D0 data: 75 GeV $< M^2 < 105$ GeV,
 $\sigma_{tot} = 221 \pm 11$ pb [D0 Coll. ('00)]

- Factorization and renormalization scale variations:
 $\mu_F = \mu_R = m_Z$,
 $1/2 \leq \{\mu_F/m_Z, \mu_R/m_Z, \mu_F/\mu_R\} \leq 2$,
 $q_T \sim m_Z$: LO $\pm 25\%$, NLO $\pm 8\%$
 $q_T \sim 20$ GeV: LO $\pm 20\%$, NLO $\pm 7\%$

- Good agreement between NLO results and data up to $q_T \sim 20$ GeV.

- In the small q_T region ($q_T \lesssim 20$ GeV) LO and NLO result diverges to $+\infty$ and $-\infty$ (accidental partial agreement at $q_T \sim 5 - 7$ GeV): need for resummation.

LO and NLO scale variations bands overlap only for $q_T > 70$ GeV
Fixed order results: q_T spectrum of Z boson at the Tevatron

- D0 data [D0 Coll. (’08,’10)].
- Scale variations as before: $\mu_F = \mu_R = m_Z$, $1/2 \leq \{\mu_F/m_Z, \mu_R/m_Z, \mu_F/\mu_R\} \leq 2$.
- Experimental errors very small but bins are larger.
- Qualitatively same situation of Tevatron Run I data.
- LO and NLO scale variations bands overlap only for $q_T > 60$ GeV.
- Good agreement between NLO results and data up to $q_T \sim 20$ GeV.

In the small q_T region ($q_T \lesssim 20$ GeV) effects of soft-gluon resummation are essential.

At Tevatron 90% of the W^\pm and Z^0 are produced with $q_T \lesssim 20$ GeV.