W/Z + jets and W/Z + heavy flavor production at the LHC

A. Paramonov (ANL)
on behalf of the ATLAS and CMS collaborations

Moriond QCD 2012
Motivation for studies of jets produced with a W or Z boson

- “Standard Model Candle”; well-understood control region to test pQCD calculations; validation of detector performance
- An irreducible background to SM measurements ($\bar{t}t$, single top, VBF, WW-scattering) and new physics (Higgs, SUSY, etc)
- Foundation for development of novel pQCD calculations; choices of scales, jet-parton matching schemes, and parton showering
 - Alpgen, Sherpa, MCFM, BlackHat-Sherpa, Madgraph, etc.
Motivation for studies of associated production of heavy flavor (b- and c-) jets and a gauge boson

- Constraints on PDFs of the heavy quarks
- The final states are tricky to calculate \rightarrow the experimental input is key for future theory developments
- The LHC gives sensitivity to a different phase-space than the Tevatron:
 - pp instead of $p\bar{p}$ (better probe of sea quark and gluons)
 - 7 TeV instead of 1.96 TeV (wider reach in transferred momenta)
Observables

- Cross sections and their ratios
 - Inclusive $\sigma(V + \geq N \text{ jets})$
 - Differential: e.g. $d\sigma/dp_T(N^{\text{th}} \text{ jet})$
 - Ratios of cross sections: $\sigma(V + \geq N \text{ jets})/\sigma(V + \geq N-1 \text{ jets})$ → Cancelation of uncertainties

- Those are often calculated for phase-space resembling the detector acceptance
 - W’s and Z’s are identified using central electrons and muons
 - Anti-k_T jets with $R=0.4$; $p_T^{\text{jet}} > 20, 25, \text{ or } 30 \text{ GeV}; |y^{\text{jet}}| < 2.1 .. 4.4$
 - Identification of heavy quarks (b- and c-) utilizes secondary vertices (lifetime and mass)
 - Understanding of backgrounds is the key issue
Backgrounds to $Z+\text{jets}$ ($Z\to\text{ee}$ or $Z\to\mu\mu$)

- Irreducible backgrounds (tt, Wt, WZ, ZZ, WW, and $Z+\gamma$) are small and estimated using simulations.
- "fake" (non-prompt) leptons are from multi-jet and $W+$jet production and are obtained using data.
- b-tagging enhances the fraction of tt and diboson events (backgrounds with fake leptons become negligible) by ~ 2.

![Graph showing event distribution]
Backgrounds to $W+$jets

- Nicely complements the $Z+$jets processes with higher statistics, different background composition, and sensitivity to different PDFs
- Multi-jet events is a significant background at low jet multiplicities \rightarrow **Important to do electron and muon channels simultaneously**
- The top quark pair production becomes the dominant background at high jet multiplicity (at 3-4) \rightarrow One of the limiting factors

![Graph showing number of events vs exclusive jet multiplicity](image)

![Graph showing events vs inclusive jet multiplicity](image)
The message on backgrounds to V+jets events

- Background in Z+jets production is low
- The top pair production and multijet events are the most significant backgrounds to W+jets:
 - $t\bar{t}$ events are dominant when the jet multiplicity is high (≥ 4 jets)
 - Multi-jet backgrounds are dominant at lower jet multiplicities.
- Top pair production becomes the dominant background to W+b-jets (when a b-tagged jet is required)
 - Limits our ability to measure cross-section for $W+bb$⁻
 - Require exclusively a b-tagged jet to measure the $W+b$ cross section
- Beneficial to study Z+jets and W+jets production in parallel:
 - Sensitive to similar physics processes
 - Sensitive to different detector effects and backgrounds
Systematic Uncertainties

- Dominated by the uncertainty on the jet response (JES)
 - Increases for forward jets and decreased with jet p_T
 - b-tagging efficiency is important for the corresponding channels ($W+b$, $Z+b$, $Z+bb$)
W+jets: Jet multiplicity

- Accurate predictions require ME+PS approach (Alpgen, MadGraph, & Sherpa); PS-only simulations (Pythia) fail at high jet multiplicity, >1 jet
- Crucial for multiple measurements and searches (e.g. separation between WW and tt; BSM searches using high jet multiplicities)
- NLO calculation (BlackHat-Sherpa) are superbly accurate.
Z+jets: Multiplicity

- Complements the W+jets results; different backgrounds and colliding partons
- Good agreement with NLO and ME+PS predictions (within statistics)
Ratios of cross sections: $\sigma(\text{V+ N}_{\text{jet}})/\sigma(\text{V+N}_{\text{jet}}-1)$

- Cancelation of systematic and theory uncertainties \rightarrow Robust way to compare data and theory

- CMS results in the two previous slides.

ATLAS: $Z \rightarrow \ell\ell$
W+charm

- Constraints the strange quarks density function (PDF)
- Utilized decay length from “simple secondary vertex high-efficiency” algorithm (SSVHE)
Measurement of W+b, Z+b and Z+bb production

- Test of perturbative QCD and heavy-flavor quark PDF’s
- \(t\bar{t} \) background is the limiting factor to measure \(W+b\bar{b} \) (2 b-jets)
- Background to the associated Higgs (WH, \(H\rightarrow b\bar{b} \)) and top production

<table>
<thead>
<tr>
<th>Final state</th>
<th>(\sigma) Measured [pb]</th>
<th>(\sigma) Expected [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z + \geq 1) b-jet + jets</td>
<td>3.78±0.05(stat) ±0.31(syst) ±0.11(theory)</td>
<td></td>
</tr>
<tr>
<td>(Z + \geq 2) b-jet + jets</td>
<td>0.37±0.02(stat)±0.07(syst)±0.02(theory)</td>
<td>LO: 0.33±0.01(stat)</td>
</tr>
</tbody>
</table>

At CDF the measured cross section is higher than the theory prediction

ATLAS: Z+b+jets

<table>
<thead>
<tr>
<th></th>
<th>(\sigma) [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>3.55±0.82(stat)±0.73(syst)±0.12(lumi)</td>
</tr>
<tr>
<td>MCFM</td>
<td>3.88±0.58 pb</td>
</tr>
<tr>
<td>ALPGEN</td>
<td>2.23±0.01 (stat only) pb</td>
</tr>
<tr>
<td>SHERPA</td>
<td>3.29±0.04 (stat only) pb</td>
</tr>
</tbody>
</table>
Z+bb \rightarrow Angular separation

- $Z\rightarrow$ee and $Z\rightarrow$\(\mu\mu\)
- Jets are not used; reconstructed B-hadrons, $B\rightarrow D+X$, using secondary vertices
 - $p_T(B) > 15$ GeV $\&\& |\eta(B)| < 2.0$

![Graphs showing angular distribution for $Z+1p$ and $Z+2p$ events.](image)
Kinematic properties of jet production: p_T

- Well reproduced by NLO and LO (ME+PS) predictions

ATLAS: $Z \rightarrow \ell \ell$

\[
\int L \, dt = 36 \, \text{pb}^{-1}
\]

- anti-k_T jets, $R = 0.4$, $p_T^{\text{jet}} > 30$ GeV, $|y^{\text{jet}}| < 4.4$

ATLAS: $W \rightarrow \ell v$

- $W \rightarrow \ell v +$ jets
- $W \rightarrow \nu v +$ jets
- $W \rightarrow$ jets
- $W \rightarrow \nu v$
\(\frac{d\sigma(W+1\text{jet})/dp_T}{d\sigma(Z+1\text{jet})/dp_T} \)

- Ratio of differential cross sections
- Cancelation of uncertainties → Precision measurement
- Well reproduced by NLO and LO (ME+PS) predictions as well
Searches for heavy particles use H_T (scalar sum of p_T of all reconstructed objects) or M(jets); the discrepancy is by definition.

They are often used as a scale in NLO calculations:

- The choice of scales evolved $M(W) \rightarrow M(W)+p_T(W) \rightarrow H_T$ (or M(jets))
Jets in the future measurements (VBF and WW-scattering)

- Future observations of VBF and WW-scattering will rely on our understanding of forward jets and rapidity gaps between jets.
 - W, Z, and H bosons via VBF
Conclusions and Outlook

- Mostly good agreement between NLO and ME+PS predictions and data
- Accuracy of the measurement is already systematically limited by uncertainties on the JES and b-/c- tagging efficiencies
- Novel NLO calculations (BlackHat-Sherpa) prediction work well up to V+4 jets!
- The comprehensive set of measurements enable development of future ME+PS simulations (Alpgen, Sherpa, etc)
 - Currently we have up to W+5p and Z+5p → will be up to V+8p or V+10p
- Precise understanding of the kinematic variables is crucial for the future measurements. (WW-scattering, searches for BSM, etc)
References

- “Measurement of the Z/γ* +bb-jet cross section in pp collisions at √s=7 TeV with the CMS detector”, (The CMS collaboration), CMS-PAS-SMP-12-003
- “A measurement of the ratio of the W and Z cross section with exactly one associated jet in pp collisions at √s = 7 TeV with ATLAS”, PLB 708 (2012) 221-240
- “Jet Production Rates in Association with W and Z Bosons in pp Collisions at √s = 7 TeV”, (The CMS Collaboration), arXiv:1110.3226
- “Observation of Z+b, Z→ee, μμ with CMS at √s = 7 TeV”, CMS-PAS-EWK-10-015
- “Measurement of associated charm production in W final states at √s = 7 TeV”, (The CMS Collaboration), CMS-PAS-EWK-11-013
NLO calculation for H_T

- Each NLO sample contains one additional emission beyond the base number of parton emission
- Events with high HT contain multiple jets → The conventional NLO calculations does not access the phase space
- Exclusive (matched) some of NLO calculations describes the high-H_T tail well
Charge asymmetry in multi-jet events

- Well predicted with ME+PS simulations
- Many uncertainties cancel out
- Sensitive to new physics
Rapidity of jets; di-jet separation

- ATLAS provides great coverage for rapidity of jets. \(\Delta R(\text{First Jet, Second Jet}) \)
- Required for development of ME-PS simulations
- Jet kinematic distributions are key for WW-scattering and VBF
Backgrounds to Z^+ heavy-flavor jets

- Require a b-tagged jet with $p_T > 20$ (CMS): 25 (ATLAS) GeV

- b-tagging enhances the fraction of $t\bar{t}$ and diboson events (backgrounds with fake leptons become negligible) by ~ 2

- Z^+ light-flavor jets is still the major background
Evaluation of the multi-jet and top pair backgrounds in the $W+\text{jets}$ sample

- Data-driven: Fit observed distributions using templates for signal and backgrounds
 - ATLAS analysis: 1D fit using distributions in missing-p_T
 - CMS analysis: 2D fit in $m_T(W)$ vs. number of b-tagged jets (to constrain $t\bar{t}$)

- The evaluation was done separately for each jet multiplicity sample
Backgrounds to W^+ heavy flavor jets

- Require a b-tagged jet (or with a secondary vertex to ID charm)
 - The $t\bar{t}$ background is too high when two b-jets are required
- Use the secondary vertex mass to distinguish between light-flavor, charm-, and b-jets.
- Use the decay length to identify charm jets

ATLAS

- Muon + 1 or 2 Jets
 - $\int L dt = 35 \text{ pb}^{-1}$

CMS preliminary

- 36 pb$^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$

- Data
 - W^++charm
 - W^++light
 - top
 - Other bkgd.