One of the main purposes of heavy-ion physics is to study the Quark-Gluon Plasma (QGP).

Properties

- Hydrodynamic behavior
- Jet quenching
- Quarkonia suppression
- Opaque to colored partons
- Transparent to EM and weakly interacting particles
The CMS Detector

Hadronic Calorimeter
EM Calorimeter
Tracker
Muon Chambers

EM and Hadronic calorimeters
Photons, Jets

HF (Forward Calorimeter)
MinBias Trigger
Centrality

Muon detectors

Inner tracker:
Charged particles

Muon Chambers
Hadronic Calorimeter
EM Calorimeter
Tracker

BSC
(Beam Scintillation Counter)
MinBias Trigger

| η | < 2.4
| η | < 5.2
| η | < 3.0
| η | < 2.5
The azimuthal dependence of the particle yield with respect to the reaction plane can be expanded in a Fourier series:

\[E \frac{d^3N}{d^3p} = \frac{1}{2\pi p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\varphi - \Psi_{R})] \right) \]

- \(\Psi_{R} \) is the reaction plane angle
- \(v_{2} \) is known as elliptic flow

Importance of Flow Measurements

- Hydrodynamic properties of the QGP
- Effects of fluctuations in initial conditions
- Quantitative estimate of path length dependence of energy loss in QGP medium
The Event Plane Method

Event Plane
Experimentally observable, used to estimate the reaction plane.

\[\Psi'_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum w_i \sin (n \varphi_i)}{\sum w_i \cos (n \varphi_i)} \right) \]

Elliptic Flow Coefficient
Resolution Correction:
Accounts for the experimental uncertainty in estimating the reaction plane.

\[v_2^{obs} \{EP\} = \langle \cos 2(\varphi - \Psi'_2) \rangle = \frac{1}{N_{ev}} \sum_j \left[\frac{1}{M_j} \sum_i \cos 2(\varphi_i - \Psi'_2) \right] \]

\[v_n \{EP\} = \frac{v_n^{obs} \{EP\}}{R} = \frac{\langle \cos n(\varphi - \Psi_n) \rangle}{\langle \cos n(\Psi_n - \Psi'_R) \rangle} \]

Reaction Plane Angle
Not experimentally observable

Rylan Conway
Moriond/QCD, La Thuile, March 10 - 17, 2012
Event Plane Results

- **CMS Preliminary Stat. Uncertainties Mid-Central**
 - $0 < p_T < 3 \text{ GeV/c}$

- **PHENIX Stat. Uncertainties**
 - $|\eta| < 0.35$

- **Significant increase in integrated v_2 from top RHIC energies due to rise in mean p_T**

- **Small increase in differential v_2 at low p_T despite large increase in $\sqrt{s_{NN}}$ possibly because of saturation due to ideal hydrodynamic behavior**

CMS PbPb $\sqrt{s_{NN}}=2.76$TeV

PHENIX AuAu $\sqrt{s_{NN}}=200$GeV

CMS Preliminary Stat. Uncertainties

- CMS
- ALICE
- STAR
- PHENIX
- PHOBOS
- CERES
- NA49 std
- NA49 cumul
- AGS (E877)

PRC68, 034903 (2003)

CMS-HIN-10-002
Di-hadron Correlations

Signal distribution:

\[S(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{same}}}{d\Delta \eta d\Delta \phi} \]

Particle 1: trigger
Particle 2: associated

Event 1

Event 2

Background distribution:

\[B(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2N_{\text{mix}}}{d\Delta \eta d\Delta \phi} \]

Mixed events must be similar, i.e.
- similar collision centrality
- similar vertex position
Di-hadron Correlations

Signal pair distribution:

\[S(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{same}}}{d \Delta \eta d \Delta \phi} \]

Background pair distribution:

\[B(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{mix}}}{d \Delta \eta d \Delta \phi} \]

Associated yield per trigger particle:

\[\Delta \eta = \eta^{\text{assoc}} - \eta^{\text{trig}} \]
\[\Delta \phi = \phi^{\text{assoc}} - \phi^{\text{trig}} \]

\[\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pair}}}{d \Delta \eta d \Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} \]
Di-hadron Correlation Results

0-5% central

![Graph showing di-hadron correlation results for 0-5% central collisions.]

- Significant difference in shape due to larger contribution of higher order harmonics from fluctuating initial conditions.

35-40% peripheral

![Graph showing di-hadron correlation results for 35-40% peripheral collisions.]

- \(p_T^{\text{trig}} \): 4 ~ 6 GeV/c
- \(p_T^{\text{assoc}} \): 2 ~ 4 GeV/c

- \(\cos(2\Delta\phi) \) behavior is visible outside of the jet region.

PbPb 2.76 TeV

- CMS PAS HIN-11-006
- JHEP 07 (2011) 076
- arXiv:1201.3158

Rylan Conway

Moriond/QCD, La Thuile, March 10 - 17, 2012
Higher Order Harmonics: v_n

$$\frac{1}{N_{\text{trig}}} \frac{dN^{\text{pair}}}{d\Delta \phi} = \frac{N_{\text{assoc}}}{2\pi} \left(1 + 2 \sum_{n=1}^{\infty} V_n^f \cos(n\Delta \phi) \right)$$

Fluctuating initial condition \Rightarrow higher-order flow harmonics (e.g., “triangular flow”, v_3)

Participants

PRC81, 054905 (2010)

$$V_n^f = v_n(p_T^{\text{trig}}) \times v_n(p_T^{\text{assoc}})$$

$\int L \, dt = 3.1 \mu b^{-1}$

PbPb $\sqrt{s_{NN}} = 2.76$ TeV

CMS PAS HIN-11-006

arXiv:1201.3158

10
High-$p_T \, v_2$ Measurements

v_2 can be used to quantitatively estimate what happens with di-jets in jet quenching scenarios with respect to the Event Plane.

Note: we are NOT measuring the effects of hydrodynamic flow at high p_T, we are investigating the path length dependence of energy loss in a QGP medium.
High-p_T Data Selection

• Full 2011 HI Data set: $L_{int} = 150 \text{ mb}^{-1}$

• High p_T Triggers
 - Single-Track High-p_T Triggers (Total # of events: $\sim 1.55M$ with $p_T > 20 \text{ GeV}$)

All triggers are at least 95% efficient
Avoiding Di-Jet Correlations in EP Method

- This is done to minimize systematic effects arising from back-to-back di-jet correlations.

Particles from the positive η region are correlated with the event plane calculated in the negative η region.

to calculate V_2:
$V_2^+ \text{ with } EP^- \text{ and } V_2^- \text{ with } EP^+$

in this analysis we used:
EP+ (3<η<5)
EP- (-5<η<-3)

*Hadronic Forward Calorimeters used for determining the Event Plane.
High-p_T v_2 Results

The first accurate measurements done at high p_T!
Gradual decrease of v_2 above $p_T \sim 10$ GeV/c
High-p_T v_2 Results

- No significant η dependence of v_2 observed
High-p_T v_2 Results

- Strong correlation between v_2 and collision centrality
- Significant, non-zero, v_2 for $28.8 < p_T < 48$ GeV/c
- Above $p_T \sim 48$ GeV/c, v_2 is consistent with zero in mid-peripheral collisions

CMS Preliminary

$|\eta| < 1$

$1 < |\eta| < 2$

$L_{int} = 150 \mu b^{-1}$

$PbPb \sqrt{s_{NN}} = 2.76$ TeV
Summary

• Significant increase of integrated v_2 from RHIC to LHC energies due to increase in mean p_T

• Di-hadron correlations suggest large contributions from higher order harmonics due to fluctuations in the initial conditions

• First accurate v_2 measurements done at high p_T

 - Significant v_2 values observed up to $p_T \sim 40$ GeV/c

 - v_2 consistent with zero in mid-peripheral events for $50 < p_T < 60$ GeV/c

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN