Mirco Dorigo
(INFN and University of Trieste)
On behalf of the CDF and DØ Collaborations

Recent Heavy Flavor Results from the Tevatron
Flavor Matters

- Generic new couplings could introduce new sources of flavor/CP violation.
- If NP scale above LHC reach: flavor might be the only way to probe it…

Will focus on latest searches for NP through flavor at the **Tevatron**.

All New results
for Winter 2012

- ✓ CDF CPV in Charm w/ Full Run II Dataset
- ✓ CDF Search for $B \rightarrow \mu\mu$ w/ Full Run II Dataset
- ✓ CDF CPV in B_s mixing w/ Full Run II Dataset
- ✓ DØ new State Decaying into $\Upsilon(1S)+\gamma$
CPV in Charm
Probe the up-quark sector.
Direct CPV >1% level suggestive of NP.

CDF 2011: trigger on displaced tracks - huge charm samples and unprecedented sensitivity in

\[
A_{\text{CP}}(D^0 \rightarrow K^+K^-) = (-0.24 \pm 0.22 \pm 0.10)\
A_{\text{CP}}(D^0 \rightarrow \pi^+\pi^-) = (+0.22 \pm 0.24 \pm 0.11)\%
\]

PRD85, 012009 (2012)

\[
\Delta A_{\text{CP}} = A_{\text{CP}}(D^0 \rightarrow K^+K^-) - A_{\text{CP}}(D^0 \rightarrow \pi^+\pi^-)
\]

maximally sensitive to NP.

Experimentally convenient: instrumental asymmetries cancel.

First evidence of CPV in charm from LHCb

\[
\Delta A_{\text{CP}} = (-0.82 \pm 0.21 \pm 0.11)\%, \ \text{3.5}\sigma \text{ from zero.}
\]

arXiv1112.0938

Independent confirmation crucial to establish it.
Optimize off-line selection for ΔA_{CP}

✓ loosen selection requirements (no D^0 I.P. cut) w.r.t. 5.9 fb$^{-1}$ analysis:
 no need of $D^0 \rightarrow K\pi$.
✓ about double signal events.

D^0 flavor through $D^* \rightarrow D^0 \pi_s$

✓ soft pion induce $O(1\%)$ artificial asymmetries.

Cancel detector effects by differences of raw asymmetries:

$$\Delta A_{\text{CP}} = (A(K^+K^-) + \langle \delta(\pi_s) \rangle) - (A(\pi^+\pi^-) + \langle \delta(\pi_s) \rangle)$$

![Graph for D^0 and \bar{D}^0 distributions with mass bins and fit comparison](image-url)
$\Delta A_{CP} = (-0.62 \pm 0.21 \text{(stat)} \pm 0.10 \text{(syst)})\%$

CDF Note 10784

Confirm LHCb result $\Delta A_{CP} = (-0.82 \pm 0.21 \pm 0.11)\%$

When combining à la HFAG No CPV point is at $\sim 4\sigma$ from zero

$\Delta A_{CP}^{\text{dir}} = (-0.67 \pm 0.16)\%$

$A_{CP}^{\text{ind}} = (-0.02 \pm 0.22)\%$
SM rates well understood
\[\text{BR}(B_s^0 \rightarrow \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}, \text{BR}(B^0 \rightarrow \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10} \]

Important constraint for BSM building.

Long history of Tevatron searches brought down over orders of magnitude the upper limit to the 10^{-8} range.

Until last summer…

Interesting $\sim 2.5 \sigma$ deviation from bkg observed by CDF in 7 fb$^{-1}$.

Compatible with other experiments and SM.

CDF update the analysis with whole Run II sample (10 fb$^{-1}$, +30% data) while keeping the analysis unchanged.

No improvement with BDT.

August 2011
Clean signature
✓ Trigger on 2 muons with \(p_T > 1.5\text{-}2 \text{ GeV}/c \)

Challenge: reject \(10^6 \) larger background while keeping the signal efficiency high.
✓ Optimized NN classifier separates S from B. Use of 14 discriminanting variables.

Combinatorial bkg predicted from mass sideband (dominant) and fake rates for \(B \rightarrow h^+h^- \). Checked on many control samples.

Rate determined using \(B^+ \rightarrow J/\psi K^+ \) as reference.
Observed limit $< 4.6 \times 10^{-9}$ (Expected 4.2×10^{-9}). Consistent with SM. p-value for background-only hypothesis is 41%.

$B^0 \rightarrow \mu^+ \mu^-$ important analysis benchmark for $B_s^0 \rightarrow \mu^+ \mu^-$
\(0.8 \times 10^{-9} < \text{BR}(B_s \rightarrow \mu\mu) < 3.4 \times 10^{-8} \quad \text{at 95\% C.L.} \quad \left[\text{BR} = (1.3^{+0.9}_{-0.7}) \times 10^{-8} \right]

Bkg+SM p-value 7.1\%. Bkg-only p-value 0.94\%

Summer deviation not reinforced by new data, but still >2\(\sigma\) for bkg-only hypothesis.
As of Last Week

Getting extremely interesting... nearing the sensitivity to see the first signal!
Search for NP in B_s Mixing
Search for NP in B_s Mixing

B_s mixing phenomenology can be significantly altered by NP.

2011 DØ: $\sim 4\sigma$ deviation from SM in B semileptonic asymmetry.

Independent cross-check is crucial.

Constrain BSM physics through

- CP-violating mixing phase largely suppressed in SM
- $B_s^{H} - B_s^{L}$ decay difference

Indeed: $a_{sl}^s \approx \left(\frac{\Delta \Gamma_s}{\Delta m_s}\right) \tan \phi_s$

CDF updates measurements with full Run II data.
Exploit interference between $B_s^0 \rightarrow J/\psi \phi$ decays w/ and w/o flavor oscillations.

- low p_T dimuon trigger. Off-line optimized NN selection @CDF; BDT/square cuts @DØ.

- joint fit to mass, production flavor, decay-time, decay-angles

Look at other $B (\varepsilon D^2 \sim 1.4\%)$ +
Look at K in fragmentation with $B_s (\varepsilon D^2 \sim 3\%)$

Disentangle CP-even/CP-odd final state
Include $J/\psi KK$ S-wave contribution

Trace the time-evolution and fast B_s oscillations
Mixing Phase Bounds

Both experiments consistent with SM ($< 1 \sigma$).

CDF Run II Preliminary $L = 9.6 \text{ fb}^{-1}$

$\Delta \Gamma_s$ in $[-0.60, 0.12]$ rad @ 68% C.L.

CDF Note 10778

ϕ_s in $[-0.60, 0.12]$ rad @ 68% C.L.

$\phi_s = -0.55^{+0.38}_{-0.36}$ rad

Strong phases fitting range restricted based on $B^0 \rightarrow J/\psi K^*$
Decay Width Difference and Lifetime

Assuming SM CP-violation, new CDF measurement with full Run II dataset

$$\Delta \Gamma_s = 0.068 \pm 0.026 \pm 0.007 \text{ ps}^{-1}$$

$$\tau_s = 1.528 \pm 0.019 \pm 0.009 \text{ ps}$$

CDF Note 10778

DØ: $\Delta \Gamma_s = 0.163^{+0.065}_{-0.064} \text{ ps}^{-1}$

$$\tau_s = 1.443^{+0.038}_{-0.035} \text{ ps}$$

PRD 85, 032006 (2012)

Very interesting to constrain A_{SL} (for instance, A. Lenz @Moriond EW 2012)
new State $\chi_b(3P)$
new State Decaying into $Y(1S) + \gamma$

While waiting for NP…

Confirm ATLAS observation ([arXiv:1112.5154](https://arxiv.org/abs/1112.5154)) of new state $\chi_b(3P) \rightarrow Y(1S) + \gamma$

$$M[\chi_b(3P)] = 10.551 \pm 0.014 \pm 0.017 \text{ GeV}$$
Conclusions
Tevatron keeps producing new, important results on the benchmark channels of heavy flavor physics with Full Run II dataset

CPV in Charm sector
CDF confirms LHCB’s evidence of CPV in charm with same precision

Rare B decays
Extension to full sample confirms summer result

B_s mixing
Closer to SM expectations. A_{SL} needs independent check.

Confirmation of $\chi_b(3P)$

Pioneered and established role of hadron collisions in HF. Keep improving flagship measurements updated to full statistics.

Don't relax just yet – a few aces still up our sleeve!
And Many More...

For more NEW results since summer 2011:
CDF Heavy Flavor Group web page
DØ Heavy Flavor Group web page

- Measurement of $\text{BR}(B^0_s \rightarrow D^{(*)}_s + D^{(*)}_s)$
- Search for CP Violation in $D^0 \rightarrow K_S \pi^+ \pi^-$
- First 3-dimensional measurement of the $Y(nS)$ spin-alignment
- Fragmentation Study with $D^\pm_s/D^\pm K$ Correlations
- Measurement of the B_c lifetime
- … … …
CDF and DØ demonstrated that cutting-edge HF physics is possible with hadron collisions in addition to high-\(p_T\) program

- **Tevatron**: \(10^{13} p\bar{p}\) collisions @ 2 TeV in 10 years: \(\approx 10 \text{ fb}^{-1}\) on tape per experiment. Shut down 30\(^{th}\) Sept. 2011.

- High-rate of all species of heavy flavors – \(B_d, B_c, B_s\), 5 new baryons (\(\Sigma_b^\pm, \Xi_b^{0-}, \Omega_b^-\)), copious D.

- Tracking: \(\sigma(p_T)/p_T^2=0.1\%\). Vertex known within 20 \(\mu\)m. Good muons. Some PID (1.5 \(\sigma\)).

- From 2001 silicon to trigger for tracks displaced from \(p\bar{p}\) vertex. Trigger with low-\(p_T\) leptons: both single and pairs.
More on B_s

$B_s \to D_s^{(*)+} D_s^{(*)-}$ Branching Ratio

Predominately CP-even. May give dominant contribution to B_s width difference in SM.

6.8 fb$^{-1}$ collected by displaced track trigger

Simultaneous fit to signal $B_s^0 \to D_s^{(*)+} D_s^{(*)-}$ and normalization mode $B^0 \to D_s^{(*)+} D_s^{(*)-}$

$D_s^{(*)+} \to K^+ K^- \pi^+$ Dalitz structure for precise determination of acceptance.

Precise BR measurements

$$BR(B_s \to D_s^{(*)+} D_s^{(*)-}) = (0.49 \pm 0.06 \pm 0.05 \pm 0.08) \%,$$

$$BR(B_s \to D_s^{(*)+} D_s^{(*)-}) = (1.13 \pm 0.12 \pm 0.09 \pm 0.19) \%,$$

$$BR(B_s \to D_s^{(*)+} D_s^{(*)-}) = (1.75 \pm 0.19 \pm 0.17 \pm 0.29) \%,$$

$$BR(B_s \to D_s^{(*)+} D_s^{(*)-}) = (3.38 \pm 0.25 \pm 0.30 \pm 0.56) \%,$$

Under some theoretical assumptions, from BR possible to infer

$$\Delta \Gamma_s / \Gamma_s = (6.99 \pm 0.54 \pm 0.64 \pm 1.20)\%$$
Soft pion induce $O(1\%)$ artificial asymmetries. Cancel detector effects by differences of raw asymmetries:

$$\Delta A_{CP} = (A(K^+K^-) + \delta(\pi_s)) - (A(\pi^+\pi^-) + \delta(\pi_s))$$

Detector asymmetries are kinematic dependent, cancellation works if π_s distributions are the same between KK and $\pi\pi$. Make them equal by reweighting.
Raw asymmetries:

\[A(\pi\pi^*) = (-1.71 \pm 0.15)\%, \]
\[A(KK^*) = (-2.33 \pm 0.14)\%. \]
<table>
<thead>
<tr>
<th>Source</th>
<th>ΔA_{CP} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximations in the suppression of detector-induced effects</td>
<td>0.009</td>
</tr>
<tr>
<td>Shapes assumed in fits</td>
<td>0.020</td>
</tr>
<tr>
<td>Charge-dependent mass distributions</td>
<td>0.100</td>
</tr>
<tr>
<td>Asymmetries from residual backgrounds</td>
<td>0.013</td>
</tr>
<tr>
<td>Total</td>
<td>0.103</td>
</tr>
</tbody>
</table>
Another Charm Results

NEW At CDF full Dalitz analysis at Hadron Collider with $D^0 \rightarrow K_S \pi^+ \pi^-$

Big improvement w.r.t. CLEO results ([PRD70, 091101 (2004)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.70.091101))

$$A_{CP}(D^0 \rightarrow K_S \pi^+ \pi^-) = (-0.05 \pm 0.57 \pm 0.54)\%$$
$\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) = \frac{N_s}{N_+} \cdot \frac{\alpha_+}{\alpha_s} \cdot \frac{\epsilon_+}{\epsilon_s} \cdot \frac{1}{\epsilon_N} \cdot \frac{f_u}{f_s} \cdot \mathcal{B}(B^+)$, PDG

Signal decays at 95% CL to be measured

Trigger acceptance ratio from MC approx. 0.2-0.3

Rec. efficiency ratio from MC/DATA approx. 0.8

$B^+ \rightarrow J/\psi K^+$ decays from data approx. 20K

Efficiency of NN requirement from MC, approx. 80-20% (cut-dependent)
Significance of 3rd bin excess decreases with new data: support interpretation as statistical fluctuation.

Unlikely to be peaking bckg. Only one is $B \to hh$. Is 10x larger in B^0 window where nothing is seen.

Unlikely to be syst. problem with combinatorial. Same procedure in B^0 where nothing is seen.

Unlikely to be NN-shape issue. Cross-check with B^+ looks good within <5%. And several crosscheck show no mass bias vs NN

We conclude this is a fluctuation. Not unlikely in one out of 80 bins. Using last 2 bins only:

$BR = (1.0^{+0.8}_{-0.6}) \times 10^{-8}$

$0.8 \times 10^{-9} < BR(B_s \to \mu\mu) < 2.5 \times 10^{-8}$ @ 95% C.L.

$BR(B_s \to \mu\mu) < 2.9 \times 10^{-8}$ @ 95% C.L.

No significant impact on result
Table: $B_s^0 \rightarrow \mu^+\mu^-$: Expected vs Observed

<table>
<thead>
<tr>
<th>Mass Bin (GeV)</th>
<th>5.31-5.334</th>
<th>5.334-5.358</th>
<th>5.358-5.382</th>
<th>5.382-5.406</th>
<th>5.406-5.43</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC NN bin Exp Bkg</td>
<td>2.56±0.34</td>
<td>2.52±0.33</td>
<td>2.49±0.33</td>
<td>2.46±0.32</td>
<td>2.42±0.32</td>
<td>12.45</td>
</tr>
<tr>
<td>0.7-0.76 Obs</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>CC NN bin Exp Bkg</td>
<td>2.77±0.35</td>
<td>2.73±0.35</td>
<td>2.69±0.34</td>
<td>2.66±0.34</td>
<td>2.62±0.33</td>
<td>13.47</td>
</tr>
<tr>
<td>0.76-0.85 Obs</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>CC NN bin Exp Bkg</td>
<td>1.22±0.23</td>
<td>1.2±0.23</td>
<td>1.18±0.22</td>
<td>1.17±0.22</td>
<td>1.15±0.22</td>
<td>5.92</td>
</tr>
<tr>
<td>0.85-0.9 Obs</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>CC NN bin Exp Bkg</td>
<td>1.05±0.21</td>
<td>1.03±0.21</td>
<td>1.02±0.21</td>
<td>1.01±0.2</td>
<td>0.99±0.2</td>
<td>5.11</td>
</tr>
<tr>
<td>0.9-0.94 Obs</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>CC NN bin Exp Bkg</td>
<td>1.05±0.21</td>
<td>1.04±0.21</td>
<td>1.02±0.21</td>
<td>1.01±0.2</td>
<td>0.99±0.2</td>
<td>5.11</td>
</tr>
<tr>
<td>0.94-0.97 Obs</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CC NN bin Exp Bkg</td>
<td>0.63±0.18</td>
<td>0.62±0.17</td>
<td>0.61±0.17</td>
<td>0.6±0.17</td>
<td>0.6±0.17</td>
<td>3.07</td>
</tr>
<tr>
<td>0.97-0.987 Obs</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CC NN bin Exp Bkg</td>
<td>0.13±0.08</td>
<td>0.13±0.08</td>
<td>0.12±0.07</td>
<td>0.12±0.07</td>
<td>0.12±0.07</td>
<td>0.62</td>
</tr>
<tr>
<td>0.987-0.995 Obs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CC NN bin Exp Bkg</td>
<td>0.11±0.07</td>
<td>0.09±0.07</td>
<td>0.08±0.07</td>
<td>0.08±0.07</td>
<td>0.08±0.07</td>
<td>0.44</td>
</tr>
<tr>
<td>0.995-1 Obs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CF NN bin Exp Bkg	1.74±0.28	1.72±0.27	1.69±0.27	1.67±0.27	1.64±0.26	8.46
0.7-0.76 Obs	2	3	3	2	1	11
CF NN bin Exp Bkg	1.83±0.28	1.8±0.28	1.78±0.28	1.75±0.27	1.72±0.27	8.88
0.76-0.85 Obs	1	5	2	2	0	10
CF NN bin Exp Bkg	1.23±0.23	1.21±0.23	1.2±0.23	1.18±0.22	1.16±0.22	5.99
0.85-0.9 Obs	0	0	3	0	1	4
CF NN bin Exp Bkg	0.81±0.19	0.8±0.18	0.78±0.18	0.77±0.18	0.76±0.18	3.92
0.9-0.94 Obs	2	1	2	2	1	8
CF NN bin Exp Bkg	0.68±0.17	0.67±0.17	0.66±0.17	0.65±0.16	0.64±0.16	3.3
0.94-0.97 Obs	1	1	0	0	0	2
CF NN bin Exp Bkg	0.38±0.13	0.38±0.13	0.37±0.13	0.37±0.13	0.36±0.13	1.86
0.97-0.987 Obs	0	2	0	0	1	3
CF NN bin Exp Bkg	0.17±0.09	0.17±0.09	0.17±0.09	0.16±0.09	0.16±0.09	0.83
0.987-0.995 Obs	0	0	1	0	0	1
CF NN bin Exp Bkg	0.18±0.11	0.17±0.11	0.17±0.11	0.16±0.11	0.16±0.11	0.83
0.995-1 Obs	0	0	0	0	0	0

Table: B_s signal window for CC (top) and CF (bottom): Expected backgrounds including $B \rightarrow hh$, and number of observed events.

Expected Limit is: $BR < 1.3 \times 10^{-8}$ at 95% (90%) CL
Table: $B^0 \rightarrow \mu^+ \mu^-$: Table

<table>
<thead>
<tr>
<th>Mass Bin (GeV)</th>
<th>CC NN bin</th>
<th>Exp Bkg</th>
<th>5.219-5.243</th>
<th>5.243-5.267</th>
<th>5.267-5.291</th>
<th>5.291-5.315</th>
<th>5.315-5.339</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7-0.76</td>
<td>Obs</td>
<td>2.69±0.35</td>
<td>2.65±0.35</td>
<td>2.62±0.34</td>
<td>2.58±0.34</td>
<td>2.55±0.34</td>
<td>13.09</td>
<td></td>
</tr>
<tr>
<td>0.76-0.85</td>
<td>Obs</td>
<td>2.91±0.37</td>
<td>2.87±0.36</td>
<td>2.84±0.36</td>
<td>2.8±0.35</td>
<td>2.76±0.35</td>
<td>14.18</td>
<td></td>
</tr>
<tr>
<td>0.85-0.9</td>
<td>Obs</td>
<td>1.26±0.24</td>
<td>1.26±0.24</td>
<td>1.25±0.23</td>
<td>1.23±0.23</td>
<td>1.21±0.23</td>
<td>6.24</td>
<td></td>
</tr>
<tr>
<td>0.9-0.94</td>
<td>Obs</td>
<td>1.11±0.22</td>
<td>1.09±0.22</td>
<td>1.08±0.22</td>
<td>1.06±0.21</td>
<td>1.05±0.21</td>
<td>5.39</td>
<td></td>
</tr>
<tr>
<td>0.94-0.97</td>
<td>Obs</td>
<td>1.11±0.22</td>
<td>1.1±0.22</td>
<td>1.08±0.22</td>
<td>1.06±0.21</td>
<td>1.05±0.21</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>0.97-0.987</td>
<td>Obs</td>
<td>0.68±0.18</td>
<td>0.67±0.18</td>
<td>0.65±0.18</td>
<td>0.64±0.18</td>
<td>0.63±0.17</td>
<td>3.27</td>
<td></td>
</tr>
<tr>
<td>0.987-0.995</td>
<td>Obs</td>
<td>0.16±0.08</td>
<td>0.15±0.08</td>
<td>0.15±0.08</td>
<td>0.14±0.08</td>
<td>0.13±0.08</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>0.995-1</td>
<td>Obs</td>
<td>0.18±0.09</td>
<td>0.17±0.08</td>
<td>0.15±0.08</td>
<td>0.12±0.07</td>
<td>0.1±0.07</td>
<td>0.72</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass Bin (GeV)</th>
<th>CF NN bin</th>
<th>Exp Bkg</th>
<th>5.219-5.243</th>
<th>5.243-5.267</th>
<th>5.267-5.291</th>
<th>5.291-5.315</th>
<th>5.315-5.339</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7-0.76</td>
<td>Obs</td>
<td>1.84±0.29</td>
<td>1.81±0.29</td>
<td>1.79±0.28</td>
<td>1.76±0.28</td>
<td>1.74±0.28</td>
<td>8.93</td>
<td></td>
</tr>
<tr>
<td>0.76-0.85</td>
<td>Obs</td>
<td>1.93±0.3</td>
<td>1.9±0.3</td>
<td>1.87±0.29</td>
<td>1.85±0.29</td>
<td>1.82±0.28</td>
<td>9.37</td>
<td></td>
</tr>
<tr>
<td>0.85-0.9</td>
<td>Obs</td>
<td>1.3±0.24</td>
<td>1.28±0.24</td>
<td>1.26±0.24</td>
<td>1.25±0.23</td>
<td>1.23±0.23</td>
<td>6.32</td>
<td></td>
</tr>
<tr>
<td>0.9-0.94</td>
<td>Obs</td>
<td>0.85±0.2</td>
<td>0.84±0.19</td>
<td>0.83±0.19</td>
<td>0.82±0.19</td>
<td>0.81±0.19</td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td>0.94-0.97</td>
<td>Obs</td>
<td>0.72±0.18</td>
<td>0.71±0.18</td>
<td>0.7±0.18</td>
<td>0.69±0.17</td>
<td>0.68±0.17</td>
<td>3.49</td>
<td></td>
</tr>
<tr>
<td>0.97-0.987</td>
<td>Obs</td>
<td>0.41±0.14</td>
<td>0.4±0.14</td>
<td>0.4±0.14</td>
<td>0.39±0.14</td>
<td>0.38±0.13</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>0.987-0.995</td>
<td>Obs</td>
<td>0.18±0.1</td>
<td>0.18±0.09</td>
<td>0.18±0.09</td>
<td>0.17±0.09</td>
<td>0.17±0.09</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>0.995-1</td>
<td>Obs</td>
<td>0.2±0.12</td>
<td>0.2±0.12</td>
<td>0.19±0.12</td>
<td>0.18±0.11</td>
<td>0.17±0.11</td>
<td>0.94</td>
<td></td>
</tr>
</tbody>
</table>

Table: B_d signal window for CC (top) and CF (bottom): Expected backgrounds including $B \rightarrow hh$, and number of observed events.

Expected Limit is: $BR < 4.2\, (3.4) \times 10^{-9}$ at 95% (90%) CL
$B_s^0 \rightarrow \mu^+ \mu^-$ Result

CDF II Preliminary 9.7 fb$^{-1}$

$\Delta \chi^2$

SM

95% Bound

90% Bound

68% Bound

$\times 10^{-9}$

$BR(B_s \rightarrow \mu^+ \mu^-)$
\[\Delta \Gamma_s : \text{Systematics} \]

| Source of systematic effect | \(c\tau(B_s^0) [\mu \text{ m}] \) | \(\Delta \Gamma \ [\text{ps}^{-1}] \) | \(|A_{||}(0)|^2 \) | \(|A_0(0)|^2 \) | \(\delta_{\perp} \) |
|-------------------------------------|-------------------------------------|-------------------------------------|----------------|----------------|----------------|
| Signal Angular Efficiency | 0.29 | 0.0014 | 0.0134 | 0.0162 | 0.076 |
| Mass Signal Model | 0.17 | 0.0007 | 0.0006 | 0.0020 | 0.018 |
| Mass Bkg Model | 0.14 | 0.0006 | 0.0003 | 0.0002 | 0.034 |
| ct Resolution | 0.52 | 0.0010 | 0.0004 | 0.0002 | 0.066 |
| ct Bkg | 1.31 | 0.0057 | 0.0006 | 0.0012 | 0.064 |
| Angular Bkg | 0.46 | 0.0037 | 0.0011 | 0.0022 | 0.009 |
| Sigma mass | 0.85 | 0.0006 | 0.0003 | 0.0002 | 0.036 |
| Sigma ct | 0.63 | 0.0006 | 0.0003 | 0.0002 | 0.038 |
| \(B_d \rightarrow J/\psi K^* \) cross-feed | 0.18 | 0.0018 | 0.0002 | 0.0015 | 0.034 |
| SVX alignment | 2.0 | 0.0004 | 0.0002 | 0.0001 | 0.034 |
| Pull bias | 0.2 | 0.0012 | 0.0021 | 0.0008 | 0.02 |
| **TOT** | **2.7** | **0.007** | **0.014** | **0.017** | **0.15** |
two samples: 2 billion single μ and 6 million di-μ in 9 fb$^{-1}$. $p_T > 1.5-4.2$ GeV/c

Measure +/- asymmetry in both samples

Asymmetry washed by muons from non-oscillating sources (from MC)

Asymmetry biased by background asymmetries from instrumental effects

Kaon contribution measured in data, pions extrapolated from MC.

Combine asymmetries from single-μ and di-μ samples to subtract common backgrounds
\[A_{SL}: \text{Muons from } B? \]

Reduce the contamination of background of non-B decays cutting on IP of the muons.

Perform test on two subsamples with IP less/greater than 120 micron. Reduce statistical resolution, but results consistent with default analysis.

IP > 120 micron more \(B^0 \)-like \(\mu \)
IP < 120 micron more \(B_s \)-like \(\mu \)

\[
\begin{align*}
A_{sl}^d &= (-0.12 \pm 0.52)\% \\
A_{sl}^s &= (-1.81 \pm 1.06)\%
\end{align*}
\]

Highly correlated \(\rho_{ds} = -0.799 \).