Rare Beauty and Charm Decays at LHCb

Chris Parkinson
Imperial College London
on behalf of the LHCb collaboration

13th March 2012
Outline

- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis, including
 - Measurement of angular observables
 - Measurement of the A_{FB} zero-crossing point (q_0^2)

- Branching fraction measurements/limits
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - $B_s^0 \rightarrow \phi \mu^+ \mu^-$
 - $B^+ \rightarrow \pi^+ \mu^+ \mu^-$
 - $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
 - $B \rightarrow \mu^+ \mu^-$
 - $D^0 \rightarrow \mu^+ \mu^-$
LHCb is a forward detector ($2 < \eta < 5$) designed to study heavy flavour physics.

- LHCb has excellent vertex and momentum resolution, PID and μ-ID...
- Each of these are critical for studies of heavy flavour physics.
Rare Decays at LHCb

- LHCb is searching for physics beyond the Standard Model (SM) by studying rare B and D meson decays
- The rare decays considered here are Flavour Changing Neutral Current processes
 - These are mediated by loop diagrams in the SM
- New physics particles can make significant contributions to these diagrams

New physics contributions can affect:
- The Lorentz structure, accessible through angular analysis
- The total amplitude, accessible through branching fraction measurement
- Indirect searches at LHCb are complimentary to direct searches at the GPDs
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ Angular Analysis

LHCb-CONF-2012-008
Angular Analysis Motivation

- The angular distribution of the rare decay $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ is sensitive to new physics contributions.
- It is parameterised by 6 q^2-dependent amplitudes (9 angular terms) and is described in terms of three angles, θ_{ℓ}, θ_K and ϕ, and $q^2 = m_{\mu\mu}^2$.

Fitting these angles allows access to theoretically clean, experimentally accessible angular observables:

- F_L, the fraction of K^{*0} longitudinal polarisation
- A_{FB}, the forward-backward asymmetry
- $S_3 \propto A_T^2 (1 - F_L)$, the asymmetry in K^{*0} transverse polarisation [1]
- A_{IM}, a T-odd CP asymmetry
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ Angular Analysis Motivation

- These observables allow separation between the SM and a variety of new physics models.
- Each observable is extracted in 6 non-uniform bins in the range $4m_{\mu}^2 < q^2 < 19 \text{ GeV}^2/c^4$ plus the theoretically interesting region $1 < q^2 < 6 \text{ GeV}^2/c^4$.

Plots taken from talk by D. Straub at Moriond EW. [link]
Events isolated using multivariate (BDT) selection
Isolate peaking backgrounds and reject with PID requirements
e.g. $B_s^0 \rightarrow \phi \mu^+ \mu^-$ with $K \rightarrow \pi$ mis-ID
LHCb(1.0 fb$^{-1}$) : 900 ± 34 signal events
$B/S \approx 0.25$ in region $5230 < m_{B^0} < 5330$ MeV$/c^2$

![Angular Analysis m_{B^0} Distribution](chart.png)

LHCb Preliminary

$0 < q^2 < 19$ GeV$/c^4$
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ Angular Analysis Results

- 4D fit to 3 angles and mass
- Larger data sample enables measurements of S_3 and A_{IM}
- Error bars include systematic uncertainties
- Data points at average q^2 of signal candidates in data
- These are the most precise measurements to-date [preliminary]
- The results are consistent with the SM prediction [2]
The SM predicts A_{FB} to change sign at a well defined point in q^2

This zero-crossing point q_0^2 is largely free from form-factor uncertainties

Extracted through a 2D fit to the foward- and backward-going m_{B^0} and q^2 distributions

- The world's first measurement of q_0^2, at $q_0^2 = 4.9^{+1.1}_{-1.3}$ GeV2/c4 [preliminary]
- This is consistent with SM predictions which range from $4 - 4.3$ GeV2/c4 [2, 3, 4]
\[B^0 \rightarrow K^{*0} \mu^+ \mu^- \text{ and } B^0_s \rightarrow \phi \mu^+ \mu^- \text{ differential branching fractions} \]

LHCb-CONF-2012-008

LHCb-CONF-2012-003
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ and $B^0_s \rightarrow \phi \mu^+ \mu^-$ differential branching fractions

- LHCb(1.0 fb$^{-1}$) : $B^0 \rightarrow K^{*0} \mu^+ \mu^-$: 900 ± 34 signal events

- Measurement of the $B^0_s \rightarrow \phi \mu^+ \mu^-$ branching fraction reported at Moriond EW
 - LHCb(1.0 fb$^{-1}$) : $B^0_s \rightarrow \phi \mu^+ \mu^-$: 77 ± 10 signal events
 - $\mathcal{B}(B^0_s \rightarrow \phi \mu^+ \mu^-) = (0.778 \pm 0.097(stat) \pm 0.061(syst) \pm 0.278(B)) \times 10^{-6}$ [preliminary]

- The most precise measurements to-date and are consistent with SM expectations [5]
First observation of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

LHCb-CONF-2012-006
First observation of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

- The $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay is a $b \rightarrow d \ell \ell$ transition

- In the SM the branching fraction is $\sim 25x$ smaller than analogous $B^+ \rightarrow K^+ \mu^+ \mu^-$ ($b \rightarrow s \ell \ell$) transition and can be enhanced in new physics models

- Can also be used for measurement of $\frac{V_{td}}{V_{ts}}$ from penguin diagrams

- The SM prediction is $\mathcal{B}(B^+ \rightarrow \pi^+ \mu^+ \mu^-) = 1.96 \pm 0.21 \times 10^{-8}$ [6]

- Current limit set by BELLE at $\mathcal{B}(B^+ \rightarrow \pi^+ \mu^+ \mu^-) < 6.9 \times 10^{-8}$ at 90% C.L. [7]

- A major background comes from mis-identified $B^+ \rightarrow K^+ \mu^+ \mu^-$ decays

- A critical analysis issue is separating these two decays
 - The $K - \pi$ separation provided by the LHCb RICH detectors is crucial
First observation of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

- This is the first observation of a $b \rightarrow d \ell \ell$ transition
- LHCb(1.0 fb^{-1}) : $B^+ \rightarrow \pi^+ \mu^+ \mu^-$: $25.3^{+6.7}_{-6.4}$ signal events
 - 5.2σ excess above background
- The measurement is consistent with the SM prediction

\[B(B^+ \rightarrow \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6(\text{stat}) \pm 0.2(\text{syst})) \times 10^{-8} \] [preliminary]

- The rarest B decay ever observed
Search for $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

LHCb-CONF-2012-010
Search for $B \rightarrow \mu^+\mu^-\mu^+\mu^-$

- No search for $B \rightarrow \mu^+\mu^-\mu^+\mu^-$ performed until now
- Can be mediated by decay to new physics S,P particles where both decay $\rightarrow \mu^+\mu^-$
- P particle could explain hyperCP observation of 3 events with mass ≈ 214 MeV [8]
- Expect 4μ final state from $B_s^0 \rightarrow J/\psi \phi$
 - where $J/\psi \rightarrow \mu^+\mu^-$ and $\phi \rightarrow \mu^+\mu^-$
- Non-resonant SM prediction $< 10^{-10}$ [9]
Search for $B \rightarrow \mu^+\mu^-\mu^+\mu^-$

- Now excluding J/ψ and ϕ resonant windows ...
- Observed number of non-resonant events consistent with background expectation

![Graph showing $B^0_s \rightarrow \mu^+\mu^-\mu^+\mu^-$ (non-resonant)](image)

- Branching fraction limits set using CL$_S$ method and phase-space model:
 \[
 \begin{align*}
 \mathcal{B}(B^0_s \rightarrow \mu^+\mu^-\mu^+\mu^-) &< 1.3 \times 10^{-8} \\
 \mathcal{B}(B^0 \rightarrow \mu^+\mu^-\mu^+\mu^-) &< 5.4 \times 10^{-9}
 \end{align*}
 \] at 95% C.L. [preliminary]

- These measurements are consistent with SM predictions
- Worlds first limit on $B \rightarrow \mu^+\mu^-\mu^+\mu^-$
The Search for $B \rightarrow \mu^+\mu^-$ and $D^0 \rightarrow \mu^+\mu^-$

LHCb-PAPER-2012-007

LHCb-CONF-2012-005
The Search for $B \to \mu^+\mu^-$ and $D^0 \to \mu^+\mu^-$

- World best limits on $B_s^0 \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ reported at Moriond EW
- The branching fractions are sensitive to contributions from new scalar particles
 - New limits constrain e.g. the SUSY parameter space at high tan β
- SM prediction $B(B_s^0 \to \mu^+\mu^-) = (3.2 \pm 0.2) \times 10^{-9}$
- SM prediction $B(B^0 \to \mu^+\mu^-) = (0.10 \pm 0.01) \times 10^{-9}$

<table>
<thead>
<tr>
<th>mode</th>
<th>limit</th>
<th>at 95% C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \to \mu^+\mu^-$</td>
<td>expected bg+SM</td>
<td>7.2×10^{-9}</td>
</tr>
<tr>
<td></td>
<td>expected bg only</td>
<td>3.4×10^{-9}</td>
</tr>
<tr>
<td></td>
<td>observed</td>
<td>4.5×10^{-9}</td>
</tr>
<tr>
<td>$B^0 \to \mu^+\mu^-$</td>
<td>expected</td>
<td>1.13×10^{-9}</td>
</tr>
<tr>
<td></td>
<td>observed</td>
<td>1.03×10^{-9}</td>
</tr>
</tbody>
</table>

- Worlds best limit on $D^0 \to \mu^+\mu^-$ decay:
 - $B(D^0 \to \mu^+\mu^-) < 1.3 \times 10^{-8}$ at 95% C.L. [preliminary]
 - An order of magnitude improvement from previous experiments [10] and is consistent with the SM prediction [11]
Summary

- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis
 - Worlds most precise measurement of angular observables
 - Worlds first measurement of the A_{FB} zero-crossing point (q_0^2)
 - LHCb-CONF-2012-008

- Branching fraction measurements/limits
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ [Worlds most precise measurement]
 - LHCb-CONF-2012-008
 - $B_s^0 \rightarrow \phi \mu^+ \mu^-$ [Worlds most precise measurement]
 - LHCB-CONF-2012-003
 - $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ [First observation]
 - LHCb-CONF-2012-006
 - $B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ [Worlds first limit]
 - LHCb-CONF-2012-010
 - $B \rightarrow \mu^+ \mu^-$ [Worlds best limit]
 - LHCb-PAPER-2012-007
 - $D^0 \rightarrow \mu^+ \mu^-$ [Order of magnitude improvement in limit]
 - LHCB-CONF-2012-005
References

\[\frac{1}{\Gamma} \frac{d^4 \Gamma}{d \cos \theta_{\ell} d \cos \theta_K d \hat{\phi} dq^2} = \frac{9}{16\pi} \left\{ F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L)(1 - \cos^2 \theta_K) + F_L \cos^2 \theta_K (2 \cos^2 \theta_{\ell} - 1) + \frac{1}{4} (1 - F_L)(1 - \cos^2 \theta_K)(2 \cos^2 \theta_{\ell} - 1) + S_3 (1 - \cos^2 \theta_K)(1 - \cos^2 \theta_{\ell}) \cos 2 \hat{\phi} + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_{\ell} + A_{Im} (1 - \cos^2 \theta_K)(1 - \cos^2 \theta_{\ell}) \sin 2 \hat{\phi} \right\} \]
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

LHCb Preliminary

- Data
- Corrected MC
- Uncorrected MC

arb. units

BDT response

arb. units

0.2 0.4 0.6 0.8 1

0 1 2 3 4

Data
Corrected MC
Uncorrected MC
\[B^0 \rightarrow K^{*0} \mu^+ \mu^- \]

<table>
<thead>
<tr>
<th>(q^2) (GeV(^2/)c(^4)) range</th>
<th>Signal Yield</th>
<th>Background Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4m_{\mu}^2 < q^2 < 2.00)</td>
<td>162.4 ± 14.2</td>
<td>27.7 ± 3.8</td>
</tr>
<tr>
<td>(2.00 < q^2 < 4.30)</td>
<td>71.4 ± 10.7</td>
<td>37.1 ± 4.1</td>
</tr>
<tr>
<td>(4.30 < q^2 < 8.68)</td>
<td>270.5 ± 18.8</td>
<td>58.8 ± 5.5</td>
</tr>
<tr>
<td>(10.09 < q^2 < 12.90)</td>
<td>167.0 ± 14.9</td>
<td>41.7 ± 4.5</td>
</tr>
<tr>
<td>(14.18 < q^2 < 16.00)</td>
<td>113.0 ± 11.7</td>
<td>17.1 ± 3.0</td>
</tr>
<tr>
<td>(16.00 < q^2 < 19.00)</td>
<td>115.0 ± 12.4</td>
<td>23.9 ± 3.6</td>
</tr>
<tr>
<td>(1.00 < q^2 < 6.00)</td>
<td>195.2 ± 16.9</td>
<td>75.8 ± 6.0</td>
</tr>
<tr>
<td>(4m_{\mu}^2 < q^2 < 19.00)</td>
<td>900.0 ± 34.4</td>
<td>206.2 ± 10.3</td>
</tr>
</tbody>
</table>
$B^0 \to K^{*0} \mu^+ \mu^-$
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

![Graph showing dB/df^2 vs q^2]
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

![Graph showing $d\mathcal{B}/dq^2$ vs q^2]
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

$\frac{4c^2}{2 \text{ GeV}^2 q^0}$

F_L

$q^2 [\text{GeV}^2/c^4]$
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

LHCb Preliminary
$B^0 \to K^{*0} \mu^+ \mu^-$

![Graph showing A_{FB} vs. q^2 for $B^0 \to K^{*0} \mu^+ \mu^-$ decay. The graph displays data points from LHCb experiments, with theoretical predictions shown in different colors. The x-axis represents q^2 in [GeV2/c4], and the y-axis represents A_{FB}. The graph includes LHCb Preliminary data.]
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$
$B^0 \rightarrow K^{*0}\mu^+\mu^-$
$B^0 \rightarrow K^{*0}\mu^+\mu^-$
\(\mathbf{B^0 \to K^*0 \mu^+\mu^-} \)

<table>
<thead>
<tr>
<th>(q^2) range (GeV(^2)/c(^4))</th>
<th>(dBF/dq^2) ((\times 10^{-7}) GeV(^{-2})c(^4))</th>
<th>(A_{FB})</th>
<th>(F_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4m^2_{\mu} < q^2 < 2.00)</td>
<td>(0.68 \pm 0.07 \pm 0.05)</td>
<td>0.00(^{+0.08}_{-0.07}) 0.01</td>
<td>0.31(^{+0.09}_{-0.06}) 0.03</td>
</tr>
<tr>
<td>(2.00 < q^2 < 4.30)</td>
<td>(0.30 \pm 0.05 \pm 0.02)</td>
<td>-0.20(^{+0.08}_{-0.07}) 0.01</td>
<td>0.74(^{+0.09}_{-0.08}) 0.02</td>
</tr>
<tr>
<td>(4.30 < q^2 < 8.68)</td>
<td>(0.54 \pm 0.05 \pm 0.05)</td>
<td>0.16(^{+0.05}_{-0.05}) 0.01</td>
<td>0.57(^{+0.05}_{-0.05}) 0.04</td>
</tr>
<tr>
<td>(10.09 < q^2 < 12.89)</td>
<td>(0.50 \pm 0.06 \pm 0.04)</td>
<td>0.27(^{+0.06}_{-0.06}) 0.01</td>
<td>0.49(^{+0.06}_{-0.07}) 0.03</td>
</tr>
<tr>
<td>(14.18 < q^2 < 16.00)</td>
<td>(0.59 \pm 0.07 \pm 0.04)</td>
<td>0.49(^{+0.04}_{-0.06}) 0.05</td>
<td>0.35(^{+0.07}_{-0.06}) 0.02</td>
</tr>
<tr>
<td>(16.00 < q^2 < 19.00)</td>
<td>(0.44 \pm 0.05 \pm 0.03)</td>
<td>0.30(^{+0.07}_{-0.07}) 0.04</td>
<td>0.37(^{+0.06}_{-0.07}) 0.04</td>
</tr>
<tr>
<td>(1.00 < q^2 < 6.00)</td>
<td>(0.42 \pm 0.04 \pm 0.04)</td>
<td>-0.18(^{+0.06}_{-0.06}) 0.01</td>
<td>0.66(^{+0.06}_{-0.06}) 0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(q^2) range (GeV(^2)/c(^4))</th>
<th>(A_{IM})</th>
<th>(2S_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4m^2_{\mu} < q^2 < 2.00)</td>
<td>(0.06^{+0.11}_{-0.10} +0.00) (-0.10 -0.03)</td>
<td>0.02(^{+0.20}_{-0.21}) 0.00</td>
</tr>
<tr>
<td>(2.00 < q^2 < 4.30)</td>
<td>(-0.02^{+0.10}_{-0.06} +0.05) (-0.06 -0.01)</td>
<td>-0.05(^{+0.18}_{-0.12}) 0.05</td>
</tr>
<tr>
<td>(4.30 < q^2 < 8.68)</td>
<td>(0.02^{+0.07}_{-0.07} +0.01) (-0.07 -0.01)</td>
<td>0.18(^{+0.13}_{-0.13}) 0.01</td>
</tr>
<tr>
<td>(10.09 < q^2 < 12.89)</td>
<td>(-0.01^{+0.11}_{-0.11} +0.02) (-0.11 -0.03)</td>
<td>-0.22(^{+0.20}_{-0.17}) 0.02</td>
</tr>
<tr>
<td>(14.18 < q^2 < 16.00)</td>
<td>(-0.01^{+0.08}_{-0.07} +0.04) (-0.07 -0.02)</td>
<td>0.04(^{+0.15}_{-0.19}) 0.04</td>
</tr>
<tr>
<td>(16.00 < q^2 < 19.00)</td>
<td>(0.06^{+0.09}_{-0.10} +0.03) (-0.10 -0.05)</td>
<td>-0.47(^{+0.21}_{-0.10}) 0.03</td>
</tr>
<tr>
<td>(1.00 < q^2 < 6.00)</td>
<td>(0.07^{+0.07}_{-0.07} +0.02) (-0.07 -0.01)</td>
<td>0.10(^{+0.15}_{-0.16}) 0.02</td>
</tr>
</tbody>
</table>
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Events / (0.2 GeV $^2 c^4$) vs. q^2 (GeV$^2 c^4$)

LHCb Preliminary

Preliminary LHCb
$B^+ \rightarrow \pi^+ \mu^+ \mu^-$
$B^+ \rightarrow \pi^+ \mu^+ \mu^-$
$B^+ \rightarrow \pi^+ \mu^+ \mu^-$

![Graph showing $M_{\pi\mu\mu}$ distribution with LHCb Preliminary results.](image-url)
$B_s^0 \rightarrow \phi \mu^+ \mu^-$

![Graph showing $d\mathcal{B}/dq^2$ as a function of q^2 (GeV2/c4).](image)