Deeply Virtual Compton Scattering from Gauge/Gravity Duality

Marko Djurić

University of Porto

work with Miguel S. Costa

Moriond QCD 2012, Wednesday, March 14, 2012
Outline

Introduction

Pomeron in AdS

Deeply Virtual Compton Scattering

Models

Data Analysis

Conclusions
Outline

Introduction

Pomeron in AdS

Deeply Virtual Compton Scattering

Models

Data Analysis

Conclusions
The strong interaction is one of the fundamental interactions between particles.
The strong interaction is one of the fundamental interactions between particles.

▶ The coupling constant in QCD runs in the opposite way to QED.

\[\alpha(\mu_1) = 4\pi b_0 \ln(\mu_2 / \Lambda_{QCD}) \]

\[b_0 = \frac{11}{3} N - \frac{2}{3} n_f (= 7) \]

▶ We see that at high energies the coupling is weak and we can study the theory perturbatively.

▶ However, at lower energies, once it is of order \(\Lambda_{QCD} \) the coupling is very strong and we cannot use pQCD.

▶ Our goal is to study the strong interaction at strong coupling.

▶ More specifically, a recent conjecture by Maldacena relating string theory on \(AdS_5 \times S_5 \) to \(N=4 \) SYM allows us to study QCD at strong coupling.
The strong interaction is one of the fundamental interactions between particles.

- The coupling constant in QCD runs in the opposite way to QED

\[\alpha(\mu_1) = \frac{4\pi}{b_0 \ln(\mu_1^2 / \Lambda_{QCD}^2)} \]

\[b_0 = \frac{11}{3} N - \frac{2}{3} n_f \quad (= 7) \]
The strong interaction is one of the fundamental interactions between particles.

- The coupling constant in QCD runs in the opposite way to QED

\[
\alpha(\mu_1) = \frac{4\pi}{b_0 \ln(\mu_1^2/\Lambda^2_{QCD})}
\]

\[
b_0 = \frac{11}{3} N - \frac{2}{3} n_f \quad (= 7)
\]

- We see that at high energies the coupling is weak and we can study the theory perturbatively.
The strong interaction is one of the fundamental interactions between particles.

- The coupling constant in QCD runs in the opposite way to QED

\[
\alpha(\mu_1) = \frac{4\pi}{b_0 \ln(\mu_1^2/\Lambda_{QCD}^2)}
\]

\[
b_0 = \frac{11}{3} N - \frac{2}{3} n_f \quad (= 7)
\]

- We see that at high energies the coupling is weak and we can study the theory perturbatively.

- However, at lower energies, once it is of order \(\Lambda_{QCD} \) the coupling is very strong and we cannot use pQCD.
The strong interaction is one of the fundamental interactions between particles.

- The coupling constant in QCD runs in the opposite way to QED

\[\alpha(\mu_1) = \frac{4\pi}{b_0 \ln(\mu_1^2/\Lambda_{QCD}^2)} \]

\[b_0 = \frac{11}{3} N - \frac{2}{3} n_f \quad (= 7) \]

- We see that at high energies the coupling is weak and we can study the theory perturbatively.
- However, at lower energies, once it is of order \(\Lambda_{QCD} \) the coupling is very strong and we cannot use pQCD.
- Our goal is to study the strong interaction at strong coupling.
The strong interaction is one of the fundamental interactions between particles.

- The coupling constant in QCD runs in the opposite way to QED

\[\alpha(\mu_1) = \frac{4\pi}{b_0 \ln(\mu_1^2/\Lambda_{QCD}^2)} \]
\[b_0 = \frac{11}{3} N - \frac{2}{3} n_f \quad (= 7) \]

- We see that at high energies the coupling is weak and we can study the theory perturbatively.

- However, at lower energies, once it is of order \(\Lambda_{QCD} \) the coupling is very strong and we cannot use pQCD.

- Our goal is to study the strong interaction at strong coupling.

- More specifically, a recent conjecture by Maldacena relating string theory on \(AdS_5 \times S_5 \) to \(\mathcal{N} = 4SYM \) allows us to study QCD at strong coupling.
Outline

Introduction

Pomeron in AdS

Deeply Virtual Compton Scattering

Models

Data Analysis

Conclusions
The Pomeron

The Pomeron is the leading order exchange in all total cross sections, and in $2 \to 2$ amplitudes with the quantum numbers of the vacuum, in the Regge limit $s \gg t$. It is the sum of an infinite number of states with the quantum numbers of the vacuum. It leads to an amplitude that as $s \to \infty$ goes as $A(s,t) \sim s^{\alpha(t)}$, $\alpha(t) = \alpha(0) + \alpha'(t^2)$, at weak coupling, the propagation of the Pomeron is given by the BFKL equation.
The Pomeron

- The Pomeron is the leading order exchange in all total cross sections, and in $2 \rightarrow 2$ amplitudes with the quantum numbers of the vacuum, in the Regge limit

$$s \gg t$$
The Pomeron

- The Pomeron is the leading order exchange in all total cross sections, and in $2 \to 2$ amplitudes with the quantum numbers of the vacuum, in the Regge limit

\[s \gg t \]

- It is the sum of an infinite number of states with the quantum numbers of the vacuum.
The Pomeron

- The Pomeron is the leading order exchange in all total cross sections, and in $2 \rightarrow 2$ amplitudes with the quantum numbers of the vacuum, in the Regge limit

 $s \gg t$

- It is the sum of an infinite number of states with the quantum numbers of the vacuum.

- It leads to an amplitude that as $s \rightarrow \infty$ goes as

 $$A(s, t) \sim s^{\alpha(t)}, \quad \alpha(t) = \alpha(0) + \frac{\alpha' t}{2},$$
The Pomeron

- The Pomeron is the leading order exchange in all total cross sections, and in $2 \rightarrow 2$ amplitudes with the quantum numbers of the vacuum, in the Regge limit
 \[s \gg t \]

- It is the sum of an infinite number of states with the quantum numbers of the vacuum.

- It leads to an amplitude that as $s \rightarrow \infty$ goes as
 \[A(s, t) \sim s^{\alpha(t)}, \quad \alpha(t) = \alpha(0) + \frac{\alpha' t}{2}, \]

- At weak coupling, the propagation of the Pomeron is given by the BFKL equation.
The AdS/CFT Correspondence

The conjectured exact duality between type IIB string theory on AdS$_5 \times S^5$, and $N=4$ SYM, on the boundary.

The duality relates states in string theory to operators in the field theory through the relation

$$
\langle e^{\int d^4x \phi_i(x)} O_i(x) \rangle_{\text{CFT}} = \mathcal{Z}_{\text{string}}[\phi_i(x, z) | z \sim 0]
$$

The metric we will use

$$
ds^2 = e^{2A(z)} [-dx + dx - + dx_{\perp} dx_{\perp} + dz dz] + R^2 d^2 \Omega^5.
$$

In the hard-wall model up to a sharp cutoff $z_0 \approx 1/\Lambda_{\text{QCD}}$

$$
e^{2A(z)} = R^2 / z^2.
$$

Correspondence works in the limit $N_C \rightarrow \infty$, $\lambda = g^2 N_C = R^4 / \alpha' \gg 1$, fixed.
The AdS/CFT Correspondence

- Conjectured exact duality between type IIB string theory on $AdS_5 \times S_5$, and $\mathcal{N} = 4$ SYM, on the boundary.
The AdS/CFT Correspondence

- Conjectured exact duality between type IIB string theory on $AdS_5 \times S_5$, and $\mathcal{N} = 4$ SYM, on the boundary.
- The duality relates states in string theory to operators in the field theory through the relation

$$\langle e^{\int d^4x \phi_i(x) O_i(x)} \rangle_{CFT} = Z_{string} [\phi_i(x, z)|_{z \sim 0}]$$
The AdS/CFT Correspondence

- Conjectured exact duality between type IIB string theory on $AdS_5 \times S_5$, and $\mathcal{N} = 4$ SYM, on the boundary.
- The duality relates states in string theory to operators in the field theory through the relation
 \[
 \langle e^{\int d^4x \phi_i(x)\mathcal{O}_i(x)} \rangle_{CFT} = Z_{\text{string}} [\phi_i(x, z)|_{z \sim 0}]
 \]
- The metric we will use
 \[
ds^2 = e^{2A(z)} [-dx^+ dx^- + dx_\perp dx_\perp + dzdz] + R^2 d^2\Omega_5.
 \]
The AdS/CFT Correspondence

- Conjectured exact duality between type IIB string theory on $AdS_5 \times S_5$, and $\mathcal{N} = 4$ SYM, on the boundary.
- The duality relates states in string theory to operators in the field theory through the relation

$$\left\langle e^{\int d^4 x \phi_i(x) O_i(x)} \right\rangle_{\text{CFT}} = Z_{\text{string}} [\phi_i(x, z) | z \sim 0]$$

- The metric we will use

$$ds^2 = e^{2A(z)} [-dx^+ dx^- + dx_\perp dx_\perp + dz dz] + R^2 d^2 \Omega_5.$$

- In the hard-wall model up to a sharp cutoff $z_0 \simeq 1/\Lambda_{QCD}$

$$e^{2A(z)} = R^2 / z^2$$
The AdS/CFT Correspondence

- Conjectured exact duality between type IIB string theory on $AdS_5 \times S_5$, and $\mathcal{N} = 4$ SYM, on the boundary.
- The duality relates states in string theory to operators in the field theory through the relation

$$
\left\langle e^{\int d^4 x \phi_i(x) \mathcal{O}_i(x)} \right\rangle_{\text{CFT}} = Z_{\text{string}} [\phi_i(x, z)|_{z \sim 0}]
$$

- The metric we will use

$$
ds^2 = e^{2A(z)} \left[-dx^+ dx^- + dx_\perp dx_\perp + dz dz \right] + R^2 d^2 \Omega_5.
$$

- In the hard-wall model up to a sharp cutoff $z_0 \simeq 1/\Lambda_{QCD}$

$$
e^{2A(z)} = R^2 / z^2
$$

- Correspondence works in the limit

$$
N_C \to \infty, \quad \lambda = g^2 N_C = R^4 / \alpha' \gg 1, \text{ fixed}
$$
Pomeron in AdS string theory

What is the Pomeron in AdS String theory? (Brower, Polchinski, Strassler, Tan 2006)

It is the Regge trajectory of the graviton.

In flat space, the Pomeron vertex operator

\[V_P \] \nonumber = (2\alpha' \partial X + \bar{\partial} X + t^4 \exp(-ik \cdot X))^{1+\alpha'}

The Pomeron exchange propagator in AdS is given by

\[K = 2(zz')^2 s g^2 R^4 \chi(s,b,z,z') \] \nonumber

where

\[\chi(\tau,L) = (\cot(\pi\rho^2) + i) g^2 e^{(1-\rho)\tau} L \sinh L \exp(-L^2 \rho \tau)^{3/2} \]
Pomeron in AdS string theory

- What is the Pomeron in AdS String theory? (Brower, Polchinski, Strassler, Tan 2006)

\[V_P = (\frac{2}{\alpha'} \partial X + \bar{\partial} X) \frac{1 + \alpha'}{4} e^{-ik \cdot X} \]

The Pomeron exchange propagator in AdS is given by

\[K = 2(zz')^2 s g_0 R^4 \chi(s,b,z,z') \]

where \(\chi(\tau,L) = (\cot(\pi \rho^2) + i) g_0 e^{(1 - \rho \tau)} \sinh \frac{L}{\rho} \exp(-L^2 \rho \tau)(\rho \tau)^{3/2} \)
Pomeron in AdS string theory

- What is the Pomeron in AdS String theory? (Brower, Polchinski, Strassler, Tan 2006)
- It is the Regge trajectory of the graviton.
What is the Pomeron in AdS String theory? (Brower, Polchinski, Strassler, Tan 2006)

- It is the Regge trajectory of the graviton.
- In flat space, the Pomeron vertex operator

\[\mathcal{V}_P \overset{\text{def}}{=} \left(\frac{2}{\alpha'} \partial X + \bar{\partial} \bar{X}^+ \right)^{1+\frac{\alpha' t}{4}} e^{-i k \cdot X} \]
Pomeron in AdS string theory

- What is the Pomeron in AdS String theory? (Brower, Polchinski, Strassler, Tan 2006)
- It is the Regge trajectory of the graviton.
- In flat space, the Pomeron vertex operator

\[V_P \overset{\text{def}}{=} \left(\frac{2}{\alpha'} \partial X + \bar{\partial} X^+ \right)^{1+\frac{\alpha' t}{4}} e^{-ik \cdot X} \]

- The Pomeron exchange propagator in AdS is given by

\[K = \frac{2(zz')^2 s}{g_0^2 R^4} \chi(s, b, z, z') \]
Pomeron in AdS string theory

- What is the Pomeron in AdS String theory? (Brower, Polchinski, Strassler, Tan 2006)
- It is the Regge trajectory of the graviton.
- In flat space, the Pomeron vertex operator

\[\mathcal{V}_P \overset{\text{def}}{=} \left(\frac{2}{\alpha'} \partial X + \partial^- X^+ \right)^{1 + \frac{\alpha'}{4} t} e^{-i k \cdot X} \]

- The Pomeron exchange propagator in AdS is given by

\[\mathcal{K} = \frac{2(z z')^2 s}{g_0^2 R^4} \chi(s, b, z, z') \]

where

\[\chi(\tau, L) = (\cot(\frac{\pi \rho}{2}) + i) g_0^2 e^{(1-\rho)\tau} \frac{L}{\sinh L} \exp\left(\frac{-L^2}{\rho \tau}\right) \frac{1}{(\rho \tau)^{3/2}} \]
The weak and strong coupling Pomeron exchange kernels have a remarkably similar form.
The weak and strong coupling Pomeron exchange kernels have a remarkably similar form.

At $t = 0$

Weak coupling:

$$K(k_\perp, k'_\perp, s) = \frac{s^j_0}{\sqrt{4\pi D \log s}} e^{-\left(\log k_\perp - \log k'_\perp\right)^2 / 4D \log s}$$

$$j_0 = 1 + \frac{\log 2}{\pi^2} \lambda, \quad D = \frac{14\zeta(3)}{\pi} \lambda / 4\pi^2$$

Strong coupling:

$$K(z, z', s) = \frac{s^j_0}{\sqrt{4\pi D \log s}} e^{-\left(\log z - \log z'\right)^2 / 4D \log s}$$

$$j_0 = 2 - \frac{2}{\sqrt{\lambda}}, \quad D = \frac{1}{2\sqrt{\lambda}}$$
Pomeron and the Eikonal Approximation

According to the Froissart bound

\[\sigma_{\text{tot}} \leq \pi c \log (s/s_0) \]

Hence the Pomeron exchange violates this bound.

Eventually effects beyond one Pomeron exchange become important.

Eikonal approximation in AdS space (Brower, Strassler, Tan; Cornalba, Costa, Penedones)

\[A(s,t) = 2 \int d^2 l e^{-i l \cdot q} \int dz d\bar{z} P_{13}(z) P_{24}(\bar{z})(1 - e^{i\chi(s,b,z,\bar{z})}) \]

We can study different scattering processes by supplying \(P_{13} \) and \(P_{24} \).

For example, already applied to DIS [Brower, MD, Sarcevic, Tan].
Pomeron and the Eikonal Approximation

- According to the Froissart bound

\[\sigma_{tot} \leq \pi c \log^2 \left(\frac{s}{s_0} \right) \]

- Hence the Pomeron exchange violates this bound.
- Eventually effects beyond one Pomeron exchange become important.
- Eikonal approximation in AdS space (Brower, Strassler, Tan; Cornalba, Costa, Penedones)

\[A(s,t) = 2 \int d^2 \ell e^{-i \ell \cdot q} \int dz d\bar{z} P_{13}(z) P_{24}(\bar{z})(1 - e^{i \chi(s,b,z,\bar{z})}) \]

- We can study different scattering processes by supplying \(P_{13} \) and \(P_{24} \).
- For example, already applied to DIS [Brower, MD, Sarcevic, Tan].
Pomeron and the Eikonal Approximation

- According to the Froissart bound

\[\sigma_{tot} \leq \pi c \log^2 \left(\frac{s}{s_0} \right) \]

- Hence the Pomeron exchange violates this bound.
According to the Froissart bound

\[\sigma_{tot} \leq \pi c \log^2 \left(\frac{s}{s_0} \right) \]

Hence the Pomeron exchange violates this bound.

Eventually effects beyond one Pomeron exchange become important.
According to the Froissart bound

$$\sigma_{tot} \leq \pi c \log^2 \left(\frac{s}{s_0} \right)$$

Hence the Pomeron exchange violates this bound.

Eventually effects beyond one Pomeron exchange become important.

Eikonal approximation in AdS space (Brower, Strassler, Tan; Cornalba, Costa, Penedones)

$$A(s, t) = 2i s \int d^2 l e^{-i \mathbf{l} \cdot \mathbf{q}} \int dzd\bar{z} P_{13}(z) P_{24}(\bar{z}) (1 - e^{i \chi(s, b, z, \bar{z})})$$
Pomeron and the Eikonal Approximation

- According to the Froissart bound

\[\sigma_{tot} \leq \pi c \log^2 \left(\frac{s}{s_0} \right) \]

- Hence the Pomeron exchange violates this bound.

- Eventually effects beyond one Pomeron exchange become important.

- Eikonal approximation in AdS space (Brower, Strassler, Tan; Cornalba, Costa, Penedones)

\[A(s, t) = 2is \int d^2le^{-i\mathbf{l}_\perp \cdot \mathbf{q}_\perp} \int dzd\bar{z} P_{13}(z)P_{24}(\bar{z})(1 - e^{i\chi(s,b,z,\bar{z})}) \]

- We can study different scattering processes by supplying \(P_{13} \) and \(P_{24} \).
Pomeron and the Eikonal Approximation

- According to the Froissart bound

$$\sigma_{tot} \leq \pi c \log^2 \left(\frac{s}{s_0} \right)$$

- Hence the Pomeron exchange violates this bound.
- Eventually effects beyond one Pomeron exchange become important.
- Eikonal approximation in AdS space (Brower, Strassler, Tan; Cornalba, Costa, Penedones)

$$A(s, t) = 2is \int d^2le^{-i\mathbf{l}_\perp \cdot \mathbf{q}_\perp} \int dzd\bar{z} P_{13}(z)P_{24}(\bar{z})(1 - e^{i\chi(s, b, z, \bar{z})})$$

- We can study different scattering processes by supplying P_{13} and P_{24}.
- For example, already applied to DIS [Brower, MD, Sarčević, Tan].
Outline

Introduction

Pomeron in AdS

Deeply Virtual Compton Scattering

Models

Data Analysis

Conclusions
What is DVCS?

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.
Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

\[
\begin{align*}
\gamma^* & \rightarrow e^- + e^- \\
k_1 & \rightarrow k_2 + p \\
k_3 & \rightarrow \gamma + k_4 \\
\gamma & \rightarrow p \\
\end{align*}
\]
What is DVCS?

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

The basic kinematical variables we need for describing this process are

- the center of mass energy $s = (p + k_1)^2$
- the photon virtuality $Q^2 = -k_1 \cdot k_1 > 0$
- the scaling variable $x \approx Q^2/s$
What is DVCS?

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

The basic kinematical variables we need for describing this process are

- the center of mass energy

 \[s = -(p + k_1)^2 \]
What is DVCS?

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

The basic kinematical variables we need for describing this process are

▶ the center of mass energy

\[s = -(p + k_1)^2 \]

▶ the photon virtuality

\[Q^2 = -k_1^\mu k_1_\mu > 0 \]
What is DVCS?

Deeply Virtual Compton Scattering is the scattering between an offshell photon and a proton.

![Diagram of Deeply Virtual Compton Scattering]

The basic kinematical variables we need for describing this process are:

- the center of mass energy
 \[s = -(p + k_1)^2 \]
- the photon virtuality
 \[Q^2 = -k_1^\mu k_1_\mu > 0 \]
- the scaling variable
 \[x \approx \frac{Q^2}{s} \]
We are interested in calculating the differential and exclusive cross sections

\[
\frac{d\sigma}{dt}(x, Q^2, t) = \frac{|W|^2}{16\pi s^2},
\]

and

\[
\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt |W|^2.
\]
We are interested in calculating the differential and exclusive cross sections

\[\frac{d\sigma}{dt}(x, Q^2, t) = \frac{|W|^2}{16\pi s^2}, \]

and

\[\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt |W|^2. \]

Here \(W \) is the scattering amplitude

\[W = 2isQQ' \int dl_\perp e^{iq_\perp \cdot l_\perp} \int \frac{dz}{z^3} \frac{d\bar{z}}{\bar{z}^3} \Psi(z) \Phi(\bar{z}) \left[1 - e^{i\chi(S,L)} \right]. \]
We are interested in calculating the differential and exclusive cross sections

\[\frac{d\sigma}{dt}(x, Q^2, t) = \frac{|W|^2}{16\pi s^2}, \]

and

\[\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt |W|^2. \]

Here \(W \) is the scattering amplitude

\[
W = 2isQQ' \int dl_\perp e^{i\mathbf{q}_\perp \cdot \mathbf{l}_\perp} \int \frac{dz}{z^3} \frac{d\bar{z}}{\bar{z}^3} \Psi(z) \Phi(\bar{z}) \left[1 - e^{i\chi(S,L)} \right].
\]

This has the previously mentioned form, we just need to supply the wavefunctions \(\Psi(z) \) and \(\Phi(\bar{z}) \) for the photon and the proton.
We are interested in calculating the differential and exclusive cross sections

$$\frac{d\sigma}{dt}(x, Q^2, t) = \frac{|W|^2}{16\pi s^2},$$

and

$$\sigma(x, Q^2) = \frac{1}{16\pi s^2} \int dt |W|^2.$$

Here W is the scattering amplitude

$$W = 2isQQ' \int dl_\perp e^{iq_\perp \cdot l_\perp} \int \frac{dz}{z^3} \frac{d\bar{z}}{\bar{z}^3} \Psi(z) \Phi(\bar{z}) \left[1 - e^{i\chi(S,L)} \right].$$

This has the previously mentioned form, we just need to supply the wavefunctions $\Psi(z)$ and $\Phi(\bar{z})$ for the photon and the proton.

In this analysis we use

$$\Psi(z) = -C \frac{\pi^2}{6} z^3 K_1(Qz), \quad \Phi(\bar{z}) = \bar{z}^3 \delta(\bar{z} - z_*)$$
Outline

Introduction

Pomeron in AdS

Deeply Virtual Compton Scattering

Models

Data Analysis

Conclusions
Conformal Pomeron

- In the paper we first consider the AdS black disk model [Cornalba, Costa, Penedones], but there is no time in this talk.

$$1 - e^{i\chi} \approx -i\chi = -i\left(\cot(\frac{\pi \rho}{2}) + i\right) g_2^0 e^{(1 - \rho \tau)} \sinh L \exp(-L^2 \rho \tau) \left(\frac{\rho \tau}{2}\right)^3/2$$

- Depends on 3 parameters: $z^* \rho = 2 - j^0 = 2\sqrt{\lambda}$.

- C is the aforementioned normalization, and g_2^0 is related to the coupling of the external states to the pomeron.
Conformal Pomeron

- In the paper we first consider the AdS black disk model [Cornalba, Costa, Penedones], but there is no time in this talk.
- Here we start with the conformal pomeron, with

\[1 - e^{i\chi} \approx -i\chi = -i(\cot\left(\frac{\pi \rho}{2}\right) + i)g_0^2 e^{(1-\rho)\tau} \frac{L}{\sinh L} \frac{\exp\left(-\frac{L^2}{\rho \tau}\right)}{(\rho \tau)^{3/2}} \]
Conformal Pomeron

- In the paper we first consider the AdS black disk model [Cornalba, Costa, Penedones], but there is no time in this talk.

- Here we start with the conformal pomeron, with

\[1 - e^{i\chi} \approx -i\chi = -i\left(\cot\left(\frac{\pi \rho}{2}\right) + i\right)g_0^2 e^{(1-\rho)\tau} \frac{L}{\sinh L} \frac{\exp\left(-\frac{L^2}{\rho \tau}\right)}{(\rho \tau)^{3/2}} \]

- Depends on 3 parameters:
Conformal Pomeron

- In the paper we first consider the AdS black disk model [Cornalba, Costa, Penedones], but there is no time in this talk.
- Here we start with the conformal pomeron, with

\[1 - e^{i\chi} \approx -i\chi = -i(\cot\left(\frac{\pi\rho}{2}\right) + i)g_0^2e^{(1-\rho)\tau} \frac{L}{\sinh L} \frac{\exp\left(\frac{-L^2}{\rho\tau}\right)}{(\rho\tau)^{3/2}} \]

- Depends on 3 parameters:

\[z_* \]

\[\rho = 2 - j_0 = \frac{2}{\sqrt{\lambda}} \]

\[C g_0^2 \]
Conformal Pomeron

- In the paper we first consider the AdS black disk model [Cornalba, Costa, Penedones], but there is no time in this talk.

- Here we start with the conformal pomeron, with

$$1 - e^{i\chi} \approx -i\chi = -i\left(\cot\left(\frac{\pi \rho}{2}\right) + i\right)g_0^2 e^{(1-\rho)\tau} \frac{L}{\sinh L} \frac{\exp\left(-\frac{L^2}{\rho \tau}\right)}{(\rho \tau)^{3/2}}$$

- Depends on 3 parameters:

$$z_*$$

$$\rho = 2 - j_0 = \frac{2}{\sqrt{\lambda}}$$

$$C \ g_0^2$$.

- C is the aforementioned normalization, and g_0^2 is related to the coupling of the external states to the pomeron.
Hard wall pomeron

- Obtained by placing a sharp cut-off on the radial AdS coordinate at $z = z_0$.

\begin{equation*}
\chi_{\text{hw}}(\tau, t = 0, z, \bar{z}) = \chi(\tau, 0, z, \bar{z}) + F(\tau, z, \bar{z}) \chi(0)_{\text{hw}}(\tau, l, z, \bar{z})
\end{equation*}

- When $t \neq 0$, we will use an approximation

\begin{equation*}
\chi_{\text{hw}}(\tau, l, z, \bar{z}) = C(\tau, z, \bar{z}) D(\tau, l) \chi(0)_{\text{hw}}(\tau, l, z, \bar{z})
\end{equation*}
Hard wall pomeron

- Obtained by placing a sharp cut-off on the radial AdS coordinate at $z = z_0$.

- First notice that at $t = 0$ χ for conformal pomeron exchange can be integrated in impact parameter

$$\chi(\tau, t = 0, z, \bar{z}) = i\pi g_0^2 \left(\cot \left(\frac{\pi \rho}{2} \right) + i \right) (z \bar{z}) e^{(1-\rho)\tau} e^{-\frac{(\ln(\bar{z}/z))^2}{\rho \tau}} \frac{e^{-\frac{(\ln(\bar{z}/z))^2}{\rho \tau}}}{(\rho \tau)^{1/2}}$$
Hard wall pomeron

- Obtained by placing a sharp cut-off on the radial AdS coordinate at $z = z_0$.
- First notice that at $t = 0$ χ for conformal pomeron exchange can be integrated in impact parameter

$$\chi(\tau, t = 0, z, \bar{z}) = i\pi g_0^2 \left(\cot \left(\frac{\pi \rho}{2} \right) + i \right) (z \bar{z}) e^{(1-\rho)\tau} \frac{e^{-\left(\frac{(\ln(\bar{z}/z))^2}{\rho \tau}\right)}}{(\rho \tau)^{1/2}}$$

- Similarly, the $t = 0$ result for the hard-wall model can also be written explicitly

$$\chi_{hw}(\tau, t = 0, z, \bar{z}) = \chi(\tau, 0, z, \bar{z}) + \mathcal{F}(\tau, z, \bar{z}) \chi(\tau, 0, z, z_0^2/\bar{z})$$
Hard wall pomeron

- Obtained by placing a sharp cut-off on the radial AdS coordinate at $z = z_0$.
- First notice that at $t = 0$ χ for conformal pomeron exchange can be integrated in impact parameter

$$\chi(\tau, t = 0, z, \bar{z}) = i\pi g_0^2 \left(\cot \left(\frac{\pi \rho}{2} \right) + i \right) (z \bar{z}) e^{(1-\rho)\tau} e^{-\frac{(\ln(\bar{z}/z))^2}{\rho \tau}} \left(\frac{\rho \tau}{\rho T} \right)^{1/2}$$

- Similarly, the $t = 0$ result for the hard-wall model can also be written explicitly

$$\chi_{hw}(\tau, t = 0, z, \bar{z}) = \chi(\tau, 0, z, \bar{z}) + \mathcal{F}(\tau, z, \bar{z}) \chi(\tau, 0, z, z_0^2/\bar{z})$$

- When $t \neq 0$, we will use an approximation

$$\chi_{hw}(\tau, l, z, \bar{z}) = C(\tau, z, \bar{z}) D(\tau, l) \chi_{hw}^{(0)}(\tau, l, z, \bar{z})$$
The function

\[F(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi \tau} e^{\eta^2} \text{erfc}(\eta), \quad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}} \]

is set by the boundary conditions at the wall and represents the relative importance of the two terms.

It is therefore in these regions that confinement is important!
The function

\[F(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi\tau} e^{\eta^2} \text{erfc}(\eta), \quad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}} \]

is set by the boundary conditions at the wall and represents the relative importance of the two terms

- Varies between -1 and 1, approaching -1 at either large z, which roughly corresponds to small Q^2, or at large τ corresponding to small x.

The function

\[\mathcal{F}(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi \tau} e^{\eta^2} \text{erfc}(\eta), \quad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}} \]

is set by the boundary conditions at the wall and represents the relative importance of the two terms.

- Varies between -1 and 1, approaching -1 at either large z, which roughly corresponds to small Q^2, or at large τ corresponding to small x.
- It is therefore in these regions that confinement is important!
The function

\[F(\tau, z, \bar{z}) = 1 - 4\sqrt{\pi \tau} \ e^{\eta^2} \ \text{erfc}(\eta), \quad \eta = \frac{-\log(z\bar{z}/z_0^2) + 4\tau}{\sqrt{4\tau}} \]

is set by the boundary conditions at the wall and represents the relative importance of the two terms.

- Varies between \(-1\) and \(1\), approaching \(-1\) at either large \(z\), which roughly corresponds to small \(Q^2\), or at large \(\tau\) corresponding to small \(x\).
- It is therefore in these regions that confinement is important!
- For the data here analysed, the size of \(F\) will roughly vary between \(-0.1\) and \(-0.4\).
Let us now discuss the data we will use later on in the talk.
The Data

Let us now discuss the data we will use later on in the talk.

- We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
The Data

Let us now discuss the data we will use later on in the talk.

- We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
- All the data is at small x ($x < 0.013$).
The Data

Let us now discuss the data we will use later on in the talk.

▶ We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
▶ All the data is at small x ($x < 0.013$).
▶ In this region pomeron exchange is the dominant process.
Let us now discuss the data we will use later on in the talk.

- We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
- All the data is at small x ($x < 0.013$).
- In this region pomeron exchange is the dominant process.
- We will look at both the differential and total exclusive cross sections.
The Data

Let us now discuss the data we will use later on in the talk.

- We will use data collected at the HERA particle accelerator, by the H1 & ZEUS experiments, taken from their latest publications.
- All the data is at small x ($x < 0.013$).
- In this region pomeron exchange is the dominant process.
- We will look at both the differential and total exclusive cross sections.
- We have 52 points for the differential and 44 points for the cross section.
Note that the same formalism has been applied before to DIS with good results ($\chi^2 = 1.04$ for the best model) [Brower, MD, Sarčević, Tan, 2010].
Note that the same formalism has been applied before to DIS with good results ($\chi^2 = 1.04$ for the best model) [Brower, MD, Sarčević, Tan, 2010].
Note that the same formalism has been applied before to DIS with good results ($\chi^2 = 1.04$ for the best model) [Brower, MD, Sarčević, Tan, 2010].

Fitting the differential cross section to the data, we get

\[g_0^2 = 1.95 \pm 0.85, \quad z_* = 3.12 \pm 0.160 \text{GeV}^{-1}, \quad \rho = 0.667 \pm 0.048. \]

corresponding to a \(\chi^2 \) of

\[\chi^2_{d.o.f.} = 1.33. \]
Fitting the differential cross section to the data, we get

\[g_0^2 = 1.95 \pm 0.85, \quad z_* = 3.12 \pm 0.160 \text{GeV}^{-1}, \quad \rho = 0.667 \pm 0.048. \]

corresponding to a \(\chi^2 \) of

\[\chi^2_{d.o.f.} = 1.33. \]

If we exclude the lowest value of \(|t| \) from each graph

\[\chi^2_{d.o.f.} = 0.76. \]
Conformal Pomeron

- Fitting the differential cross section to the data, we get
 \[g_0^2 = 1.95 \pm 0.85, \quad z_* = 3.12 \pm 0.160 \text{GeV}^{-1}, \quad \rho = 0.667 \pm 0.048. \]
corresponding to a \(\chi^2 \) of
 \[\chi^2_{d.o.f.} = 1.33. \]

- If we exclude the lowest value of \(|t| \) from each graph
 \[\chi^2_{d.o.f.} = 0.76. \]

- For the cross section the values we get are
 \[g_0^2 = 8.79 \pm 4.17, \quad z_* = 6.43 \pm 2.67 \text{ GeV}^{-1}, \quad \rho = 0.816 \pm 0.038. \]
 with a \(\chi^2 \)
Conformal Pomeron

▶ Fitting the differential cross section to the data, we get

\[g_0^2 = 1.95 \pm 0.85, \quad z_* = 3.12 \pm 0.160 \text{GeV}^{-1}, \quad \rho = 0.667 \pm 0.048. \]

corresponding to a \(\chi^2 \) of

\[\chi^2_{d.o.f.} = 1.33. \]

▶ If we exclude the lowest value of \(|t|\) from each graph

\[\chi^2_{d.o.f.} = 0.76. \]

▶ For the cross section the values we get are

\[g_0^2 = 8.79 \pm 4.17, \quad z_* = 6.43 \pm 2.67 \text{ GeV}^{-1}, \quad \rho = 0.816 \pm 0.038. \]

with a \(\chi^2 \)

\[\chi^2_{d.o.f.} = 1.00 \]
Running the same fit using the eikonal approximation, instead of just keeping single pomeron exchange, does not improve the fits, due to the fact that the size of χ is small in this kinematical region.
Running the same fit using the eikonal approximation, instead of just keeping single pomeron exchange, does not improve the fits, due to the fact that the size of χ is small in this kinematical region.
Hard wall pomeron

- The parameters we obtain by fitting are

\[g_0^2 = 2.46 \pm 0.70, \quad z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}, \quad \rho = 0.712 \pm 0.038, \]

\[z_0 = 4.44 \pm 0.82 \text{ GeV}^{-1}. \]

Corresponding to a \(\chi^2 \) of

\[\chi^2_{d.o.f.} = 0.51. \]
Hard wall pomeron

- The parameters we obtain by fitting are
 \[g_0^2 = 2.46 \pm 0.70, \quad z_\ast = 3.35 \pm 0.41 \, \text{GeV}^{-1}, \quad \rho = 0.712 \pm 0.038, \]
 \[z_0 = 4.44 \pm 0.82 \, \text{GeV}^{-1}. \]

 corresponding to a \(\chi^2 \) of
 \[\chi^2_{d.o.f.} = 0.51. \]

- The fit is better than the conformal one!
The parameters we obtain by fitting are
\[g_0^2 = 2.46 \pm 0.70, \quad z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}, \quad \rho = 0.712 \pm 0.038, \]
\[z_0 = 4.44 \pm 0.82 \text{ GeV}^{-1}. \]

Corresponding to a \(\chi^2 \) of
\[\chi^2_{d.o.f.} = 0.51. \]

The fit is better than the conformal one!
Because confinement effects can still be felt at the lowest value of \(-t \), relatively close to \(\Lambda_{QCD} \).
The parameters we obtain by fitting are

\[g_0^2 = 2.46 \pm 0.70, \quad z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}, \quad \rho = 0.712 \pm 0.038, \]
\[z_0 = 4.44 \pm 0.82 \text{ GeV}^{-1}. \]

corresponding to a \(\chi^2 \) of

\[\chi^2_{d.o.f.} = 0.51. \]

The fit is better than the conformal one!
Because confinement effects can still be felt at the lowest value of \(-t\), relatively close to \(\Lambda_{QCD} \).

For the cross section

\[g_0^2 = 6.65 \pm 2.30, \quad z_* = 4.86 \pm 2.87 \text{ GeV}^{-1}, \quad \rho = 0.811 \pm 0.036, \]
\[z_0 = 8.14 \pm 2.96 \text{ GeV}^{-1}. \]

corresponding to a \(\chi^2 \) of
Hard wall pomeron

- The parameters we obtain by fitting are

\[g_0^2 = 2.46 \pm 0.70, \quad z_* = 3.35 \pm 0.41 \text{ GeV}^{-1}, \quad \rho = 0.712 \pm 0.038, \]

\[z_0 = 4.44 \pm 0.82 \text{ GeV}^{-1}. \]

corresponding to a \(\chi^2 \) of

\[\chi^2_{d.o.f.} = 0.51. \]

- The fit is better than the conformal one!
- Because confinement effects can still be felt at the lowest value of \(-t\), relatively close to \(\Lambda_{QCD} \).
- For the cross section

\[g_0^2 = 6.65 \pm 2.30, \quad z_* = 4.86 \pm 2.87 \text{ GeV}^{-1}, \quad \rho = 0.811 \pm 0.036, \]

\[z_0 = 8.14 \pm 2.96 \text{ GeV}^{-1}. \]

corresponding to a \(\chi^2 \) of

\[\chi^2_{d.o.f.} = 1.03. \]
Outline

Introduction

Pomeron in AdS

Deeply Virtual Compton Scattering

Models

Data Analysis

Conclusions
We thus conclude today’s talk.
We thus conclude today’s talk.

- We have seen that we now have 2 processes (DIS and DVCS) where the AdS black disk and the AdS (BPST) pomeron exchange give excellent agreement with experiment in the strong coupling region.
- Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.
- The value of the pomeron intercept is in the region $1.2 - 1.3$ which is in the crossover region between strong and weak coupling, and a lot of the equations have a form which is very similar both at weak and at strong coupling (but χ is different).
- It might therefore be possible to extend some of the insights we gain even into the weak coupling regime.
- The hard wall model, although a simple modification of AdS, seems to capture effects of confinement well. Interesting to repeat some of the calculations using a different confinement model to identify precisely what features are model independent.
We thus conclude today’s talk.

- We have seen that we now have 2 processes (DIS and DVCS) where the AdS black disk and the AdS (BPST) pomeron exchange give excellent agreement with experiment in the strong coupling region.

- Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.

- The value of the pomeron intercept is in the region $1.2 - 1.3$, which is in the crossover region between strong and weak coupling, and a lot of the equations have a form which is very similar both at weak and at strong coupling (but χ is different).

- It might therefore be possible to extend some of the insights we gain even into the weak coupling regime.

- The hard wall model, although a simple modification of AdS, seems to capture effects of confinement well. Interesting to repeat some of the calculations using a different confinement model to identify precisely what features are model independent.
We thus conclude today’s talk.

- We have seen that we now have 2 processes (DIS and DVCS) where the AdS black disk and the AdS (BPST) pomeron exchange give excellent agreement with experiment in the strong coupling region.
- Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.
- The value of the pomeron intercept is in the region $1.2 - 1.3$ which is in the crossover region between strong and weak coupling, and a lot of the equations have a form which is very similar both at weak and at strong coupling (but χ is different).
We thus conclude today’s talk.

- We have seen that we now have 2 processes (DIS and DVCS) where the AdS black disk and the AdS (BPST) pomeron exchange give excellent agreement with experiment in the strong coupling region.

- Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.

- The value of the pomeron intercept is in the region $1.2 - 1.3$ which is in the crossover region between strong and weak coupling, and a lot of the equations have a form which is very similar both at weak and at strong coupling (but χ is different).

- It might therefore be possible to extend some of the insights we gain even into the weak coupling regime.
We thus conclude today’s talk.

- We have seen that we now have 2 processes (DIS and DVCS) where the AdS black disk and the AdS (BPST) pomeron exchange give excellent agreement with experiment in the strong coupling region.
- Hence string theory on AdS is giving us interesting insights into non-perturbative scattering.
- The value of the pomeron intercept is in the region $1.2 - 1.3$ which is in the crossover region between strong and weak coupling, and a lot of the equations have a form which is very similar both at weak and at strong coupling (but χ is different).
- It might therefore be possible to extend some of the insights we gain even into the weak coupling regime.
- The hard wall model, although a simple modification of AdS, seems to capture effects of confinement well. Interesting to repeat some of the calculations using a different confinement model to identify precisely what features are model independent.
Future work

Some more work that is under way
Future work

Some more work that is under way

- We should apply these methods to other processes where pomeron exchange is dominant. Next step is to study vector meson production, which is similar to DVCS, but with the difference that the outgoing particle is not a photon but a meson.
Future work

Some more work that is under way

- We should apply these methods to other processes where pomeron exchange is dominant. Next step is to study vector meson production, which is similar to DVCS, but with the difference that the outgoing particle is not a photon but a meson.

- It is also interesting to extend these methods beyond $2 \rightarrow 2$ scattering.
Future work

Some more work that is under way

- We should apply these methods to other processes where pomeron exchange is dominant. Next step is to study vector meson production, which is similar to DVCS, but with the difference that the outgoing particle is not a photon but a meson.
- It is also interesting to extend these methods beyond $2 \rightarrow 2$ scattering.
- Recent paper by Brower, MD and Tan applies double pomeron exchange to Higgs production - see the talk by Rich Brower on Friday.
Thank you!