Hard Probes in PbPb collisions with CMS

Yetkin Yilmaz

on behalf of the CMS Collaboration

Moriond QCD 2012, La Thuile, March 14
Hard processes in vacuum:
- Well understood by pQCD
- Measured in pp collisions

What happens to the final state, in the hot and dense medium?

Jets
Photons
Z^0
W^±
Quarkonia (Prompt and Non-Prompt)

Hadrons
arXiv:1202.2554

Jets
Photons
Z^0
W^±
Quarkonia (Prompt and Non-Prompt)

Hard processes in QCD medium
No significant effects on the initial state, by color-neutral probes
Charged hadron production at high-p$_T$ is suppressed → Jets are quenched!
Jet measurements

Calorimeter clusters and tracks are matched and combined to obtain most detailed information of particles in the event (Details: CMS-PAS-HIN-11-004)
Estimated background is subtracted from each calorimeter segmentation
Lessons from 2010 LHC data

- Very asymmetric in energy!
- No angular decorrelation
- Energy distributed over large range

- Fragmentation of jets unmodified

CMS-PAS-HIN-11-004
Data sample of 2011

150 μb$^{-1}$ ~ 20 times more data than in 2010!!!
Able to perform same measurements differentially in p_T

Yetkin Yilmaz (MIT) Hard Probes in PbPb with CMS
Background fluctuations supersede the recoil jet more often in data.

Correlation peak is the same in data and Pythia across all values of p_T.

No significant angular decorrelation of dijets.
At high p_T, only very few jets get completely lost on the away side.

- Background amount enhanced with quenching

- However, very little at high p_T
Dijets in PbPb are more imbalanced than Pythia at all bins of leading jet p_T.
Energy loss apparent at all jet p_T.

Reference itself has an increasing trend.

No significant dependence on jet p_T.
Conclusions

Enhanced imbalance exists at all p_T

No angular decorrelation

The fraction of the energy that a jet loses does not dramatically change with jet p_T
Back up
The CMS Detector
Leading jet momentum dependence

Dijets in PbPb are more imbalanced than Pythia at all bins of leading jet p_T.
Fragmentation of jets

Structure of reconstructed jets resemble those that were produced in vacuum
No additional hard radiation inside the jet (CMS-PAS-HIN-11-004)
Jet Measurements

Lots of underlying event activity:

\[\frac{dN}{d\eta}(\eta=0) \sim 2000 \]

Local fluctuations from semi-hard interactions

Depends on collision centrality
Jet Measurements

Background estimated for each calorimeter ring of constant η

The background estimation is re-iterated after excluding the jets found in the first iteration
Jet Measurements

After the background subtraction, some higher local fluctuations remain (fake jets)

The fluctuations also deteriorate the jet resolution in central events

→ Important to represent these fluctuations well in simulated reference
PbPb event simulations with Hydjet 1.8

• Hydjet 1.8 default tune successfully reproduces:
 • Charged hadron multiplicity
 • Charged hadron p_T spectrum
 • Azimuthal asymmetry of low-p_T particles (Elliptic Flow)

• Pythia dijet events are mixed with the Hydjet sample at the same vertex

http://lokhtin.web.cern.ch/lokhtin/hydro/plots
Centrality

More peripheral \(\leftarrow 70-100\%, 50-70\%, 30-50\%, 20-30\%, 10-20\%, 0-10\% \rightarrow \) More central

\(N_{\text{part}} \): Number of participating (overlapping) nucleons in event

\(N_{\text{coll}} \): Number of binary interactions in event

Transverse energy in the forward calorimeter is correlated to \(N_{\text{part}} \)

Rare probes exhibit a bias towards central events (\(N_{\text{coll}} \) scaling)
Jet Measurements

Combining various subdetectors provides strong tools for analysis of jets. Low p_T efficiency is important for unbiased measurement.
The global event properties are modified with the existence of quenching.

The missing energy is found at large angles from the jet axis.
Isolated Photons in 2010 data

- Isolation with event by event UE subtraction (R = 0.4)
- Background shower shape estimated from isolation sideband