Hadronic B Decays at LHCb

C.R. Jones

HEP Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE. United Kingdom

The article outlines three new or updated LHCb results presented at Moriond QCD 2012, using 1.0 fb⁻¹ of data collected in 2011.

1 B₀ to double-charm final states

Double charm decays of B mesons provide an interesting avenue to search for signs of new physics beyond the Standard Model (SM). For example, the decays \(B^0 \rightarrow D^+D^- \) and \(B^0_s \rightarrow D^+_sD^- \) can be used to measure the weak phase \(\gamma \), assuming \(U \)-spin symmetry and the decay \(B^0 \rightarrow D^+D^- \) provides an alternate way to measure \(\sin(2\beta) \), which can in principle differ from the values determined in \(B^0 \rightarrow (c\bar{c})K^0 \) because of penguin contributions.

1.1 Event Selection and Analysis

Signal candidates are formed using reconstructed \(D^0 \rightarrow K^-\pi^+ \), \(D^+ \rightarrow K^-\pi^+\pi^+ \) and \(D^+_s \rightarrow K^+K^-\pi^+ \) decays. The B candidates are then reconstructed from the appropriate pair of charm mesons, applying both mass and vertex constraints to the assumed decay chain and loose particle identification requirements on the \(D \) children. To further improve the signal purity, a multivariate selection is then applied, trained on data using clean signals of \(D \) mesons obtained from background subtracted \(B^0 \rightarrow D^+s\pi^- \) and \(B^- \rightarrow D^0\pi^- \) decays. Background for the training is taken from the \(D \) mass sideband regions. In addition to including kinematical quantities of the \(D \) and the \(D \) children, a number of track-quality and particle-identification variables are also used to maximize the discriminating power.

The mass spectra are fitted using a single Crystal Ball function which is used for all \(\bar{B} \rightarrow D\bar{D}' \) modes. Simulated events are used to derive Gaussian parametrizations for the backgrounds due to mis-reconstructed decays. An exponential combinatoric background term is also included. Examples of the fitted mass spectra are shown in Figures 1 and 2.

The results for the branching ratios, computed from the fitted signal yields, are

\[
\begin{align*}
\frac{\mathcal{B}(\bar{B}_s^0 \rightarrow D^+D^-)}{\mathcal{B}(\bar{B}^0 \rightarrow D^+D^-)} = 1.00 \pm 0.18 \pm 0.09, & \quad \frac{\mathcal{B}(\bar{B}_s^0 \rightarrow D^+_sD^-)}{\mathcal{B}(\bar{B}^0 \rightarrow D^+_sD^-)} = 0.048 \pm 0.008 \pm 0.004, \\
\frac{\mathcal{B}(\bar{B}_s^0 \rightarrow D^+_sD^-)}{\mathcal{B}(\bar{B}^0 \rightarrow D^+_sD^-)} = 0.508 \pm 0.026 \pm 0.043, & \quad \frac{\mathcal{B}(\bar{B}_s^0 \rightarrow D^0\bar{B}^0)}{\mathcal{B}(\bar{B}^- \rightarrow D^0\bar{B}^0)} = 0.015 \pm 0.004 \pm 0.002, \\
\end{align*}
\]

where the errors are statistical and systematic respectively. See² for details on the determination of the systematic uncertainties.
Testing the unitary of the CKM quark mixing matrix, by verifying the condition $|V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^*| = 0$, is a powerful check of the SM. This condition describes a triangle in the complex plane, whose area is proportional to the amount of CP violation in the model, and the unitary of which can be tested by making over-constraining measurements of its sides and angles.

Measurements of the partial widths of $B^\pm \rightarrow D K^\pm$ decays, with D either a D^0 or \bar{D}^0 meson, provide one of the most powerful methods for determining the currently least-well determined observable, the CKM phase $\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$. If the same D final state is accessible for both D^0 and \bar{D}^0 mesons, the interference of these two processes gives sensitivity to γ and may exhibit direct CP violation. This feature of open-charm B^- decays was first recognised in its application to CP eigenstates, such as $D \rightarrow K^+K^-$, $\pi^+\pi^-\eta$, but can be extended to other decays, e.g. $D \rightarrow \pi^-K^+$, labelled “ADS” modes in reference to the authors.

1.2 Summary

First observations and relative branching fractions measurements of the decays $\bar{B}_s^0 \rightarrow D^+D^-$, $\bar{B}_s^0 \rightarrow D^+_sD^-$ and $\bar{B}_s^0 \rightarrow D^0\bar{D}^0$ have been made. A new result on the branching fraction of $\bar{B}_s^0 \rightarrow D^+_sD^-$ relative to $\bar{B}_s^0 \rightarrow D^+_sD^-$, which has a precision about 5 times better than the current world average value, has also been presented.

2 Observation of CP violation in $B^\pm \rightarrow D K^\pm$ decays

Testing the unitary of the CKM quark mixing matrix, by verifying the condition $|V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^*| = 0$, is a powerful check of the SM. This condition describes a triangle in the complex plane, whose area is proportional to the amount of CP violation in the model, and the unitary of which can be tested by making over-constraining measurements of its sides and angles.

Measurements of the partial widths of $B^\pm \rightarrow D K^\pm$ decays, with D either a D^0 or \bar{D}^0 meson, provide one of the most powerful methods for determining the currently least-well determined observable, the CKM phase $\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$. If the same D final state is accessible for both D^0 and \bar{D}^0 mesons, the interference of these two processes gives sensitivity to γ and may exhibit direct CP violation. This feature of open-charm B^- decays was first recognised in its application to CP eigenstates, such as $D \rightarrow K^+K^-$, $\pi^+\pi^-\eta$, but can be extended to other decays, e.g. $D \rightarrow \pi^-K^+$, labelled “ADS” modes in reference to the authors.

2.1 Event Selection and Analysis

All sixteen combinations of $B^\pm \rightarrow Dh^\pm$, $D \rightarrow h^+h^-$ with $h = K, \pi$ are formed with the candidate D mass within $1765 - 1965$ MeV/c^2. P and Pt cuts are applied to the D daughter tracks, in order to ensure best pion versus kaon discrimination.

A multi-variate selection is then trained using a simulated sample of $B^\pm \rightarrow [K^+\pi^\mp]DK^\pm$ and background events from the D sideband ($35 < |m(hh) - m_{PDG}| < 100$ MeV/c^2) of an independent sample collected in 2010. The selection uses a combination of track and vertex...
quality variables, B^\pm and D flight distance and the angle between the B^\pm momentum vector and the line joining its decay vertex to the primary interaction vertex. For further details see\(^3\).

The observables of interest are determined from a fit to the invariant mass distributions of selected B candidates, as shown in Figure 3.

![Figure 3: Invariant mass distributions of $B^\pm \to [K^\pm \pi^\mp] D_h^\pm$ (left) and $B^\pm \to [\pi^\pm K^\mp] D_h^\pm$ (right) candidates.](image)

In total, thirteen observables are measured in the fit:

\[
\begin{align*}
R_{K/\pi}^{f} & = \frac{\Gamma(B^- \to [f]_{D} K^-) + \Gamma(B^+ \to [f]_{D} K^+)}{\Gamma(B^- \to [f]_{D} \pi^-) + \Gamma(B^+ \to [f]_{D} \pi^+)} , \quad R_{K}^{f} = \frac{\Gamma(B^\pm \to [\pi^\pm K^\mp] D_h^\pm)}{\Gamma(B^\pm \to [K^\pm \pi^\mp] D_h^\pm)} , \\
A_{f} & = \frac{\Gamma(B^- \to [f]_{D} h^-) - \Gamma(B^+ \to [f]_{D} h^+)}{\Gamma(B^- \to [f]_{D} h^-) + \Gamma(B^+ \to [f]_{D} h^+)} \\
\end{align*}
\]

where f represents KK, $\pi\pi$ and the favoured $K\pi$ mode. The following quantities are deduced:

- $R_{CP^+} \approx <R_{K/\pi}^{KK}, R_{K/\pi}^{\pi\pi}> / R_{K/\pi}^{K} = 1.007 \pm 0.038(\text{stat}) \pm 0.012(\text{syst})$
- $A_{CP+} = <A_{KK}^{K}, A_{KK}^{\pi\pi}> = 0.145 \pm 0.032(\text{stat}) \pm 0.010(\text{syst})$
- $R_{ADS(K)} = (R_{K}^{+} - R_{K}^{-})/(R_{K}^{+} + R_{K}^{-}) = 0.0152 \pm 0.0020(\text{stat}) \pm 0.0004(\text{syst})$
- $A_{ADS(K)} = (R_{K}^{-} - R_{K}^{+})/(R_{K}^{-} + R_{K}^{+}) = -0.52 \pm 0.15(\text{stat}) \pm 0.02(\text{syst})$
- $R_{ADS(\pi)} = (R_{\pi}^{+} - R_{\pi}^{-})/(R_{\pi}^{+} + R_{\pi}^{-}) = 0.00410 \pm 0.00025(\text{stat}) \pm 0.00005(\text{syst})$
- $A_{ADS(\pi)} = (R_{\pi}^{-} - R_{\pi}^{+})/(R_{\pi}^{-} + R_{\pi}^{+}) = 0.143 \pm 0.062(\text{stat}) \pm 0.011(\text{syst})$.

2.2 Summary

The $B^\pm \to DK^\pm$ ADS mode has been observed with a statistical significance of $\sim 10\sigma$ and displays evidence (4.0σ) of a large negative asymmetry. The $B^\pm \to D\pi^\pm$ ADS mode shows a hint of a positive asymmetry with 2.4σ significance. The KK and $\pi\pi$ modes both show positive asymmetries. The statistical significance of the combined asymmetry, A_{CP^+}, is 4.5σ. With a total significance of 5.8σ, direct CP violation in $B^\pm \to DK^\pm$ decays is observed.

3 Polarization amplitudes and triple product asymmetries in the decay $B_s^0 \to \phi\phi$

In the SM, the flavour-changing neutral current decay $B_s^0 \to \phi\phi$ proceeds via a $b \to s\bar{s}s$ penguin process. These decays can be used to investigate new sources of CP violation in the comparison of their time-dependent CP asymmetry with the charmonia modes (e.g $B_s \to J/\Psi\phi$).

As the decay is a pseudoscalar to vector-vector transition, three possible spin configurations of the vector meson pair are allowed by angular momentum conservation, namely H_{+1}, H_{-1} and H_0. From these states, three linear polarization amplitudes can be defined

\[
\begin{align*}
A_0 &= H_0 , \quad A_\perp = \frac{H_{+1} - H_{-1}}{\sqrt{2}} , \quad A_{\parallel} = \frac{H_{+1} + H_{-1}}{\sqrt{2}} .
\end{align*}
\]

The $\phi\phi$ final state can be a mixture of CP-even and CP-odd eigenstates. The longitudinal (A_0) and parallel (A_{\parallel}) components are CP-even and the perpendicular component (A_\perp) is
CP-odd. From the V–A structure of the weak interaction, the longitudinal component, $f_L = \frac{|A_0|^2}{(|A_0|^2 + |A_\perp|^2 + |A_\parallel|^2)}$, is expected to be dominant. The relevant decay angles are defined in Figure 4.

Figure 4: Decay angles for the $B_s^0 \to \phi\phi$ decay.

A search for physics beyond the SM can also be performed by studying the triple products $U = \frac{\sin(2\Phi)}{2}$ and $V = \pm \sin(\Phi)$. Non zero values of the asymmetries in these variables (0 in the SM), A_U and A_V, can be either due to T-violation or final-state interactions.

3.1 Event Selection and Analysis

$B_s^0 \to \phi\phi$ candidates are reconstructed using events where both ϕ mesons decay into a K^+K^- pair. Excellent signal purity (Figure 5) is achieved using cuts on the minimum impact parameter of the tracks to all reconstructed pp interaction vertices, and by requiring the tracks also are identified as kaons.

3.2 Summary

The polarization amplitudes ($|A_0|^2$, $|A_\perp|^2$, $|A_\parallel|^2$) and triple product asymmetries A_U and A_V are determined by performing an unbinned maximum likelihood fits to data. The results are:

\[
\begin{align*}
|A_0|^2 & = 0.365 \pm 0.022 \text{ (stat) } \pm 0.012 \text{ (syst)}, \\
|A_\perp|^2 & = 0.291 \pm 0.024 \text{ (stat) } \pm 0.010 \text{ (syst)}, \\
|A_\parallel|^2 & = 0.344 \pm 0.024 \text{ (stat) } \pm 0.014 \text{ (syst)}, \\
\cos(\delta_\parallel) & = -0.844 \pm 0.068 \text{ (stat) } \pm 0.029 \text{ (syst)}. \\
\end{align*}
\]

and are consistent previous measurements and do not exhibit any T-odd violation effects.

2. First observations and branching fraction measurements of $B_s^0 \to D^0 K_S^0$ and $B_s^0 \to D \phi$. Phys. Lett., B253:483, 1991.
4. Improved methods for observing CP violation in $B^\pm \to K D^0(D^0)$ modes and extraction of the CKM angle γ. *Phys.Rev.Lett.*, 78:3257, 1997.
5. David Atwood, Isard Dunietz, and Amarjit Soni. Enhanced CP violation with $B \to K D^0(D^0)$ modes and extraction of the CKM angle γ. *Phys.Rev.*, D63:036005, 2001.