Long-range angular correlations by strong color fields in hadronic collisions

Kevin Dusling
North Carolina State University

Rencontres de Moriond
La Thuile, Aosta valley, Italy

March 15th, 2013
First LHC Discovery! (Sept. 2010)

(b) CMS MinBias, 1.0GeV/c<\(p_T\)<3.0GeV/c

(d) CMS N ≥ 110, 1.0GeV/c<\(p_T\)<3.0GeV/c

CMS Collaboration (Khachatryan, Vardan et al.)
JHEP 1009 (2010) 091
arXiv:1009.4122 [hep-ex]
HERA's view of the proton

\[Q^2 = 10 \text{ GeV}^2 \]

valence quarks \[= \int u_v + d_v \, dx = 3 \]

 gluons \[= \int g \, dx \gtrless 30 \]
The rise at small x

This cannot continue to rise like this forever!
Criteria for Gluon Saturation

1. Transverse gluon density: \(\rho \sim \frac{xG A}{S_\perp} \sim \frac{A xG}{A^{2/3}} \sim A^{1/3} xG \)

2. Recombination cross-section: \(\sigma_{gg \rightarrow g} \sim \frac{\alpha_s}{Q^2} \)

3. Saturation Criteria: \(\rho \sigma_{gg \rightarrow g} \gtrsim 1 \)

\[Q_s^2 \sim A^{1/3} xG \sim A^{1/3} x^{-0.3} \]

Saturation scale is a new momentum scale in problem

Gribov, Levin, Ryskin (1983)
Power counting in QCD: multiparticle production

Low color charge density (min bias):

Jet graph:

\[g \]

\[\mathcal{O} \left(\alpha_s^4 \right) \]

Glasma graph:

\[F \]

\[\mathcal{O} \left(\alpha_s^6 \right) \]
Power counting in QCD: multiparticle production

Low color charge density (min bias):
Jet graph: \(g \)
\[
\mathcal{O} \left(\alpha_s^4 \right)
\]
Glasma graph:
\[
\mathcal{O} \left(\alpha_s^6 \right)
\]

High color charge density (central):
Jet graph: \(g \rightarrow 1/g \)
\[
\mathcal{O} \left(1 \right)
\]
Glasma graph:
\[
\mathcal{O} \left(\alpha_s^{-2} \right)
\]

Expect \(\alpha_s^8 \) enhancement of “Glasma” graph! Is this seen in the data?
Anatomy of a proton-proton collision

Dusling, Venugopalan, arXiv:1302.7018, submitted to PRD.
Anatomy of a proton-proton collision

Jet graph:

Glasma graph:

pp $\sqrt{s} = 7$ TeV, $N \geq 110$
$2 < p_T^{\text{trig}} < 3$ GeV/c
$1 < p_T^{\text{assoc}} < 2$ GeV/c

Dusling, Venugopalan, arXiv:1302.7018, submitted to PRD.
Systematics of the p+p ridge

Ridge persists to large rapidity separations:

Evidence for a semi-hard scale!

CMS Preliminary

N ≥ 110

2<p_T^{trig}<3 GeV/c
1<p_T^{assoc}<2 GeV/c

Low Multiplicity → High Multiplicity

Associated Yield

N < 35
35 ≤ N < 90
N ≥ 90
N ≥ 110
N ≥ 130

CMS Preliminary

2<|Δη|<4
1<p_T^{assoc}<2 GeV/c

Evidence for a semi-hard scale!
Both Jet and Ridge understood!

Description requires both saturation and non-linear BFKL gluon dynamics

Dusling, Venugopalan, arXiv:1302.7018, submitted to PRD.
Factorization in the dense-dense limit

\[d^2 N \propto \frac{S_\perp}{p_\perp^2 q_\perp^2} \int_{k_\perp} \Phi_A^2(x_1, k_\perp) \Phi_B(x_1, p_\perp - k_\perp) \Phi_B(x_2, q_\perp - k_\perp) + \cdots \]

Many-body high energy QCD: The Color Glass Condensate

Observables must be independent from how the large-x and small-x degrees of freedom are separated: Functional Renormalization Group equation (JIMWLK).

\[l_\perp \sim Q_0 \]

\[Q_0 \text{(projectile), } Q_0 \text{(target)} \text{ chosen to match multipliicty / centrality} \]
Understanding the Ridge

The origin of the ridge is a subtle form of quantum interference:

\[\propto \frac{S_\perp}{p_\perp^2 q_\perp^2} \int d^2 k_\perp \Phi_A^2(k_\perp) \Phi_B(|p_\perp - k_\perp|) \Phi_B(|q_\perp - k_\perp|) \]

Cauchy-Schwarz Inequality:

\[\int d^2 k_\perp \Phi_A^2(k_T) \Phi_B(|p_T - k_T|) \Phi_B(|q_T - k_T|) \leq \int d^2 k_\perp \Phi_A^2(k_T) \Phi_B^2(|p_T - k_T|) \]

Equality satisfied if and only if: \[\Phi(|p_T + k_T|) \propto \Phi(|q_T + k_T|) \]

Expect collimation on very general grounds
Understanding the Ridge

Ratio of Peak to Pedestal: \[CY \propto \frac{\int d^2 k^2 \Phi^2_A(k_T) \Phi^2_B(|p_T - k_T|)}{\int d^2 k^2 \Phi^2_A(k_T) \Phi_B(|p_T - k_T|) \Phi_B(|p_T + k_T|)} \]

Collimation sensitive to detailed structure of nuclear wavefunction
CMS Collaboration (Chatrchyan, Serguei et al.)
Submitted to Physics Letters B
arXiv:1210.5482 [nucl-ex]
Similar systematics BUT factor of 4 larger for same \(N_{\text{trk}} \) (i.e. density)
Understanding the Ridge

\[Q_0^2(\text{lead}) = N_{\text{part}}^{\text{Pb}} \cdot 0.168 \text{ GeV}^2 \]

New High-Multiplicity Predictions!
p+Pb CMS Systematics

Dusling, Venugopalan, arXiv:1302.7018, submitted to PRD.
ALICE systematics

ALICE managed to subtract away-side jet and observes both the near and away-side ridge!

Dusling, Venugopalan, arXiv:1302.7018, submitted to PRD.
ATLAS systematics

Data: Extracted from ATLAS Data of e-Print: arXiv:1212.5198 [hep-ex]
Dusling, Venugopalan, arXiv:1302.7018, submitted to PRD.
Summary

The LHC has made a remarkable discovery of a novel collimation between two particles flying in opposite directions in ultra-rare high multiplicity events.

1. Unified description of p+p and p+Pb data across all experiments
2. High gluon densities are essential
3. Possible smoking gun for gluon saturation
Backup
Final-State effects?

1. Why is jet unmodified?
 - A 1-2 GeV mini-jet escapes unmodified yet interactions are strong enough to produce a large flow of the underlying event?
 - This would be a peculiar paradigm much different from A+A

2. Is there a consistent hydrodynamic picture of BOTH p+p and p+Pb?
 - Why is the signal 4 times larger in p+Pb for the same multiplicity?
 - Considering that the p+Pb and p+p areas are comparable?
RHIC d+Au predictions

ALICE Result ($\sqrt{s}=5.02$ TeV)

\[Q_{0,\text{proton}}^2 = 0.336 \text{ GeV}^2 \ (\sqrt{s}=200 \text{ GeV}) \]

bottom to top: \(N_{\text{Part}}^{\text{Pb}} = 3, 6, 10, 14, 22 \)

\[2 < p_T^{\text{trig}} < 4 \text{ GeV}; \ 1 < p_T^{\text{asc}} < 2 \text{ GeV} \]

\[Q_{0,\text{proton}}^2 = 0.336 \text{ GeV}^2; \ N_{\text{Part}}^{\text{Pb}} = 18 \]

\[0.5 < p_T^{\text{asc}} [\text{GeV}] < 0.75 \]
The ridge phenomenon was first discovered in heavy-ion collisions.

Dan Magestro, STAR, Hard Probes 2004
Jorn Putschke, STAR, Quark Matter 2006
In p+p we are seeing the intrinsic collimation from a single flux tube. Increasing transverse flow in p+p creates a discrepancy with data. Are we sure the A+A ridge is probing the nuclear wavefunction?

In A+A there are many such tubes each with an intrinsic correlation enhanced by flow. Yet, transverse flow is needed to explain identical measurements in Pb+Pb.

The correlation is long range in rapidity.
Causality dictates the correlation formed early.