Searches for Extra Dimensions, Leptoquarks, and Technicolor at the LHC

Rencontres de Moriond

La Thuile, Italy
March 9th - 16th 2013

Jörg Stelzer
Michigan State University

on behalf of the ATLAS and CMS collaborations
A Breakthrough in Physics

ATLAS and CMS jointly announce discovery of Higgs-like particle

Within the Standard Model:
Comparison between the direct measurements of M_W and m_t (green) and their indirect determination from a global fit to electroweak precision measurements including the “Higgs” (blue).

Fit p-value = 0.08

Single channel measurements and EW global fit consistent with SM. But convincing?
Open Questions

- Is it the SM Higgs and source of EWSB dynamics?
 - Detailed measurement of properties needed

- Still room for other, Higgs-less, theories that break EW symmetry?
 - Technicolor, composite Higgs, extra-dimensional EWSB

- Other unsolved problems in SM
 - Hierarchy problem: $m_{EW}/M_{Pl} \sim 10^{-16}$
 - Dark matter/energy
 - Matter-antimatter asymmetry
 - Origin of generations …

→ Physics beyond the Standard Model (BSM) well motivated

- Searches for (non-SUSY) physics BSM scenarios in different signatures

 - CMS and ATLAS with ~65 publications each on exotics searches
BSM @ LHC – Extra Dimensional Models

Address hierarchy problem, effective Planck scale lowered to $O(\text{TeV})$

Large ED model (ADD)

- n extra dimensions of size R. For gravity only \to weakens gravitational coupling to SM

Reduced Planck scale in $4+n$ dimensions assumed at $O(\text{TeV})$:

$$M_D \sim \sqrt{\frac{R^{-n}}{M_{Pl}^2}}$$

Signatures:

- Direct KK graviton emission plus g/γ
 \to missing energy and single jet or photon
- Virtual KK graviton exchange, continuous spectrum
 \to Dilepton, diphoton final states, broad excess over SM

Randall-Sundrum (RS1, RS2)

- One extra warped dimension
 RS1: for gravity, RS2 for all SM particles

Scale on weakbrane

$$\Lambda_\pi \sim M_{Pl} e^{-kR\pi}$$

- k – curvature
- R – size of ED

Signatures:

- Virtual KK graviton exchange, narrow separated states
 \to resonant excess over SM prediction
Technicolor (TC)

- Effective theories with a new strong force dynamics to provide mechanism for EWSB
 - No Higgs (composite Higgs state for EWSB), no hierarchy problem
- Bound states: technimesons π_T, ρ_T, ω_T, a_T
- Explorable at LHC: Low scale TC (LSTC) and Minimal Walking Technicolor (MWT)
- Search for narrow resonances e.g. in dilepton or diboson final states

Leptoquarks (LQ)

- Color-triplet bosons, couple to leptons and baryons of the same generation
- Masses at GUT scale, some TC models predict LQ at TeV scale
- At LHC: produced in pairs or with associated lepton

 ![Diagram of LQ production]

- LQ signature: high p_T leptons, E_T jets, missing E_T
Resonant Di-Boson Production

- Many SM extensions predict the existence of heavy resonances decaying to pairs of electroweak gauge bosons
 - W' in the Extended Gauge Model (EGM)
 - Technimesons (LSTC)
 - RS graviton

Charged (WZ/γ)
- W' (spin 1)
 - Triple gauge coupling $W'WZ$
 - Fermionic coupling like W

- ρ_T (spin 1), a_T (spin 0)

Neutral ($WWZZ/\gamma\gamma$)
- RS graviton (spin 2)
Search for resonant ZZ production in $Z \rightarrow llqq \ (l=e/\mu)$

Signal selection

Leptons:
- Above 25 GeV (20 GeV for subleading)
- Fiducial constrains, Lepton ID, isolated from hadronic activity, origin PV
- Invariant mass near M_Z

Jets:
- anti-kt algorithm ($R = 0.4$)
- $p_T > 30$GeV, contained in tracking volume

Two signal regions to treat jet-jet overlap
- *Resolved:* $p_T(ll) > 50$GeV
 - Two leading jets: $\Delta \phi_{jj} < 1.6$, $65 < m_{jj} < 115$ GeV
- *Merged:* $p_T(ll) > 200$GeV
 - Leading jet: $p_T(j) > 200$GeV, $m_j > 40$ GeV

Only the green jet is considered $m_{\mu\mu} = 2.9$ TeV, the red is outside the tracking volume
Search for resonant ZZ production

- **Backgrounds**
 - Z+jets
 - Irreducible non-resonant WW/WZ/ZZ
 - ttbar (real leptons, different kinematics)

- Cross check: data compared with MC simulation, after resolved (merged) signal selection is applied

- Parameterized background estimate

\[
f(m; p_{0,1,2,3}) = p_0 \frac{(1 - x)^{p_1}}{x^{p_2 + p_3 \ln(x)}}
\]

- Use of BumpHunter algorithm (arxiv: 1101.0390) to test for the presence of a resonant signal and fit with the smooth background hypothesis
Search for resonant ZZ production – Bulk G* limits

No signal feature observed

Combination uses resolved (merged) selection below (above) 1 TeV, as the expected limits are better in the respective regions.

Limits on bulk RS G* with $\kappa/m_{Pl} = 1.0$

Upper limit on $\sigma(pp\rightarrow G^*) \times \text{BR}(G^* \rightarrow ZZ)$

Lower limit m_{G^*}: 850 GeV @ 95% C.L.
Search for resonant WZ production

WZ→ lνll signal selection (l=e,m)

- **Z:**
 - 2 leptons \(p_T > 25 \text{ GeV} \)
 - Fiducial, isolation, PV, lepton ID
 - \(|m_{ll} - m_Z| < 20 \text{ GeV} \)

- **W:**
 - Lepton with \(p_T > 25 \text{ GeV} \)
 - \(E_T^{\text{miss}} > 25 \text{ GeV} \)
 - \(m_T^W = \sqrt{2p_T^{\ell} E_T^{\text{miss}}(1 - \cos \Delta \phi)} < 100 \text{ GeV} \)
 (suppresses events with poor \(E_T^{\text{miss}} \))

- **Non-resonant WZ background suppression**
 - \(\Delta y(W,Z) < 1.8 \) and \(\Delta \phi(W,Z) > 2.6 \)

- **Understanding pileup is crucial**
 - Track based pileup suppression
 - Pileup overlay in MC

Average pileup per bunch for 7/8 TeV

Understanding pileup is crucial for missing ET.

ETmiss resolution vs Number Primary Vtx

Pileup suppression based on tracks from vertex. Minimum bias events are added to MC.
Search for resonant WZ production - Backgrounds

- Diboson background (ZZ, WZ, $Z\gamma$, $W\gamma$) estimated from MC
 - Corrected with lepton data/MC scale factors, normalized to luminosity

- Fake leptons from $ll+jets$ processes ($Z+jets$, $ttbar$, Wt) estimated from data
 - Di-jet enriched sample to measure lepton-fake factor f
 - $f =$ ratio between bad (loose) and good (tight) quality leptons
 - f is applied to samples with two good and one bad quality lepton

- Two control regions with modified signal selection
 - WZ control region: $\Delta y(W,Z) > 1.8$ and $\Delta\phi(W,Z) < 2.6$
 - $Z+jet$ control region: $E_T^{miss} < 25$ GeV, $m_T^W < 25$ GeV

Diboson background validation

Fake lepton background validation
Search for resonant WZ production – Result

~ no significant excess observed

\[p_T^Z \text{ spectrum: MC-data comparison after signal selection} \]

\[M_{WZ} \text{ spectrum: MC-data comparison after signal selection} \]

- Predicted W' and ρ_T sample signals for illustration

3/10/13 J.Stelzer - Exotics Searches
Search for resonant WZ production – W’ and \(\rho_T \) Limits

- **Upper limits on \(\sigma \times \text{BR} \)**

- **W’ in EGM**

 \(pp \rightarrow W' \rightarrow WZ \)

 Lower EGM W’ mass limit

<table>
<thead>
<tr>
<th>Expected</th>
<th>1300 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>1180 GeV</td>
</tr>
</tbody>
</table>

- **Low scale TC**

 \(pp \rightarrow \rho_T \rightarrow WZ \) (assuming W’-like kinematics)

 Lower \(\rho_T \) mass limit

 \[
 m_{aT} = 1.1 m_{\rho_T} \quad 920 \text{ GeV} \\
 m_{aT} \gg m_{\rho_T} \quad 920 \text{ GeV}
 \]

 Benchmark parameterization:

 \[m_{\rho_T} = m_{\pi_T} + m_W, \sin \chi = 1/3 \]
Non-resonant dilepton searches – ADD Theory

- Broad enhancement at large M_{ll} over the SM prediction

- Dilepton event selection and background estimate follows Z' analysis
 - See talk of Sam Harper this morning
 - Good MC-data agreement in control regions $M_{ll} < 1.8$ TeV

- Signal LO cross-section
 - UV cut off imposed at Λ to avoid divergences when summing over KK modes
 - Two possible parameterizations:
 - GRW: single parameter Λ_T
 - HLZ: n and $M_s(\Lambda)=M_{Pl}(4+n)$

- ADD signal modeled using templates $\Lambda_T \in [1.6, 5.2]$ TeV
 - Integrate over signal region $M_{ll} \in [1.8, 8]$ TeV

CMS-PAS-EXO-12-027
CMS-PAS-EXO-12-031
Non-resonant dilepton searches – Limits on $\sigma \times \text{BR}$ and Λ_T

- **GRW parameterization**

- **HLZ parameterization**
 - Assume different ranges of validity, no signal contribution beyond M_{max}

Upper limits on $\sigma \times \text{BR}$ ($pp \rightarrow G_{KK} \rightarrow \mu\mu$)

<table>
<thead>
<tr>
<th>Channel</th>
<th>n=2</th>
<th>n=3</th>
<th>n=4</th>
<th>n=5</th>
<th>n=6</th>
<th>n=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu\mu$</td>
<td>0.25 fb</td>
<td>0.19 fb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ee</td>
<td>0.25 fb</td>
<td>0.19 fb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>combined</td>
<td>0.25 fb</td>
<td>0.19 fb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lower limits on M_S vs UV cutoff

<table>
<thead>
<tr>
<th>Channel</th>
<th>M_S [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu\mu$</td>
<td>3.69 4.49 3.77 3.41 3.17 3.00</td>
</tr>
<tr>
<td>ee</td>
<td>3.99 4.77 4.01 3.63 3.37 3.19</td>
</tr>
<tr>
<td>combined</td>
<td>4.35 4.94 4.15 3.75 3.49 3.30</td>
</tr>
</tbody>
</table>
Evolution of M_S limits

- CMS combination of $e\bar{e}$ and $\mu\bar{\mu}$ channel compared to previous results

Comparison of current CMS limits with previous results

- CMS Preliminary

Limit on M_S [TeV]

M_S limits for different channels and experiments, including CMS, Atlas, and DØ.
Reconstruction, signal selection (ATLAS)
- High momentum central jet
- Missing E_T (separated from any second jet)
- Lepton veto to suppress EW and top background
- Four signal regions SR1, …, SR4:
 M_{ET} and jet $p_T > (120, 220, 350, 500)$ GeV

Data driven background estimation
- $Z/W+$jets, ttbar, diboson
 - Simulated distributions bin-by-bin corrected using data-derived control regions ($Z+$jets, $W+$jets)
- QCD multi-jet estimated from jets-enriched data control samples
Comparison of data to the SM backgrounds predictions.

ADD signal illustrated

\[p_T \text{ spectrum for Signal Region 3} \]

\[\text{Comparison of data to the SM backgrounds predictions.} \]

\[\text{ADD signal illustrated} \]

\[\sim \text{ no significant excess observed} \]
ATLAS

Upper limits on $\sigma \times A \times \epsilon$ (pp → jet+G_{KK})

CMS

<table>
<thead>
<tr>
<th>n extra dim.</th>
<th>LO 95% CL observed limit on M_D [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.10</td>
</tr>
<tr>
<td>3</td>
<td>3.94</td>
</tr>
<tr>
<td>4</td>
<td>3.44</td>
</tr>
<tr>
<td>5</td>
<td>3.10</td>
</tr>
<tr>
<td>6</td>
<td>2.94</td>
</tr>
</tbody>
</table>

Evolution of lower limits on M_D
High-Mass Resonances – RS G* Limits

- Dilepton resonance search at ATLAS (Sam Harper’s talk)
- Dijet resonance search at CMS (John Paul Chou’s talk)

\[\sim \text{no significant excess observed} \]

CMS G* → gg/qq: \(m_{G^*} > 1.58 \text{ TeV} \) (\(k/M_{Pl} = 0.1 \))

ATLAS G* → ll: \(m_{G^*} > 2.47 \text{ TeV} \) (\(k/M_{Pl} = 0.1 \))

<table>
<thead>
<tr>
<th>Event Channel</th>
<th>Observed mass limit [TeV]</th>
<th>Expected mass limit [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G^* \rightarrow e^+e^-)</td>
<td>2.40</td>
<td>2.39</td>
</tr>
<tr>
<td>(G^* \rightarrow \mu^+\mu^-)</td>
<td>2.08</td>
<td>2.14</td>
</tr>
<tr>
<td>(G^* \rightarrow \ell^+\ell^-)</td>
<td>2.47</td>
<td>2.47</td>
</tr>
</tbody>
</table>

[Image of CMS Preliminary and RS Graviton graphs]

[Image of ATLAS plot for G* → ll]
New results on 7 TeV data

- LSTC Limits from $W \gamma$ and $Z \gamma$ from ATLAS with 4.6 fb$^{-1}$ at $\sqrt{s} = 7$ TeV
 - $m_{\omega_T} > 494$ GeV @ 95% C.L.
 - $m_{a_T} > 703$ GeV @ 95% C.L.

- 3rd Generation Scalar Leptoquarks from ATLAS with 4.7 fb$^{-1}$ at $\sqrt{s} = 7$ TeV
 - $M_{LQ} > 534$ GeV @ 95% C.L.
ATLAS and CMS study many signatures to look for physics beyond the SM

- Presented searches for signatures ADD and RS ED models, LSTC model, and LQ
- No significant excess above SM prediction observed
- Set stronger limits on $\sigma \times BR$ and on the masses of new particles

First analyses using full 8 TeV data are becoming public

- Stay tuned for updates on the large number of searches
BACKUP
Diphoton searches

- Looking for KK gravitons in $pp \rightarrow G^* \rightarrow \gamma\gamma$

4.9 fb$^{-1}$
$\sqrt{s} = 7$ TeV
ATLAS
RS G* exclusion limits with ll and gg combined

- Combination of dilepton channel result with γγ channel for RS G* search.
- Diphoton channel has twice higher BR