Results from PHENIX from Polarized \(pp \) Collisions at RHIC

David Kawall, University of Massachusetts Amherst, USA
on behalf of the PHENIX Collaboration
Motivation for Spin Physics with Ws at RHIC

- Goal of this work: measurement of flavor separated, polarized PDFs $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$
- Recall $\Delta q(x, \mu^2) = q_+(x, \mu^2) - q_-(x, \mu^2)$, helicity-dependent PDFs
- Currently $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$ poorly known

- Why is this important?
 - NA51, E866 observed large differences in unpolarized sea quarks $\bar{u}(x) - \bar{d}(x) \neq 0$
 - Natural to ask whether $\Delta \bar{u}(x) - \Delta \bar{d}(x) \neq 0$?
 - Such differences related to fundamentals like Pauli principle: predicts $\Delta \bar{u} > 0$, $\Delta \bar{d} < 0$

- Measured in semi-inclusive polarized DIS experiments (SMC, HERMES, COMPASS) - detect scattered lepton and hadron h
 - $\sigma \propto \sum_{q=u,d,s} \left[\Delta q(x) D^h_q(z) + \Delta \bar{q}(x) D^h_{\bar{q}}(z) \right]$
- Results limited by knowledge of fragmentation functions D^h_q
- Low scale \Rightarrow active work on NLO, target fragmentation, higher twist corrections
Motivation for Spin Physics with W's at RHIC

- Polarized PDF results from recent global analysis
- Fractional uncertainties large on $\Delta \bar{u}(x)$ and $\Delta \bar{d}(x)$
- Q. How else can we reduce these uncertainties?
- A. STAR and PHENIX by exploiting maximal parity violation in W production in polarized pp collisions
 - No uncertainty from fragmentation (couplings of W well known)
 - Measurements made at high scale ($Q^2 \approx M_W^2 \approx 6400$ GeV2)
 - NLO and resummation effectively handle QCD effects

- Results determined primarily by semi-inclusive DIS
- Data already suggest symmetry breaking of polarized u and d sea quarks
- $\Delta \bar{u} > 0$, $\Delta \bar{d} < 0$, comparable to unpolarized case (red line)
- Many models: large-N_c, chiral quark solitons models, Pauli-blocking, ...
Measuring polarized sea quarks through $W^+ \rightarrow l^+ + \nu_l$ and $W^- \rightarrow l^- + \bar{\nu}_l$

- At leading order: $u_L + \bar{d}_R \rightarrow W^+$, $d_L + \bar{u}_R \rightarrow W^-$
- Construct parity-violating asymmetry:

$$A_{W^+}^L \equiv \frac{1}{P} \frac{N^+(W) - N^-(W)}{N^+(W) + N^-(W)} = \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)d(x_2) + \bar{d}(x_1)u(x_2)}$$

$\Rightarrow W^+$ production sensitive to $\Delta u(x)$, $\Delta \bar{d}(x)$; W^- sensitive to $\Delta d(x)$, $\Delta \bar{u}(x)$;

- Can extract ratios $[\Delta d(x)/\Delta u(x)]$ and $[d(x)/u(x)]$
- Central arm measurement $pp \rightarrow W^\pm \rightarrow e^\pm \nu$ probes PDFs at:

$$\langle x_{1,2} \rangle \approx \frac{M_w}{\sqrt{s}} \exp(\pm y_W) \approx 0.16$$

- N.B. We detect the decay lepton, not the W, interpretation more complicated
Motivation for Spin Physics with Ws at RHIC

Plots from RHIC Spin Plan 2008. For \textit{lepton} asymmetry from W decay

$$A_L(W^+) \propto -\Delta u(x_1)\bar{d}(x_2)(1 - \cos \hat{\theta})^2 + \Delta \bar{d}(x_1)u(x_2)(1 + \cos \hat{\theta})^2$$

$$A_L(W^-) \propto +\Delta \bar{u}(x_1)d(x_2)(1 - \cos \hat{\theta})^2 - \Delta d(x_1)\bar{d}(x_2)(1 + \cos \hat{\theta})^2$$

- At positive Y_{W^+} ($x_1 \gg x_2$) sensitive to $-\Delta u(x)/u(x)$, at negative Y_{W^+} to $\Delta \bar{d}(x)/d(x)$
- y_W can not be determined unambiguously from y^{lab}_e at mid-rapidity:
 $$y^{lab}_e = \hat{y}_e + y_W$$, where $\hat{y}_e = \frac{1}{2} \ln \left[\frac{1 + \cos \hat{\theta}}{1 - \cos \hat{\theta}} \right]$,
 $$p_T^e \approx \frac{M_W}{2} \sin \hat{\theta} = \frac{M_W}{2} \sin(\pi - \hat{\theta})$$
- Irreducible uncertainty in sign, $P_T^W \neq 0$ either, extraction of $\Delta \bar{u}(x)$, $\Delta \bar{d}(x)$ not trivial
- NLO+resummation description complete (Nadalosky, Yuan, Vogelsang, de Florian)
RHIC : The World’s only Polarized Proton Collider

- Peak luminosity $\approx 2 \times 10^{32}$ cm$^{-2}$s$^{-1}$ at $\sqrt{s} = 500$ GeV/c, $P \approx 50\%$, longitudinal or transverse
- Up to 120 bunches in each ring, crossing every 106 ns, helicity of pairs $++, +-, -+, - -$ alternates rapidly
- Rapid reversals reduce most systematics; \exists crossing-by-crossing differences in \mathcal{L} and vertex distribution
For $W^\pm \rightarrow e^\pm + \nu_e$ at $|\eta| < 0.35$

- Each arm $\Delta \phi = \pi/2$, $|\eta| < 0.35$ ($70^\circ < \theta < 110^\circ$)
- $\int \vec{B} \cdot d\vec{l} \approx 0.8 \text{ T} \cdot \text{m}$
- Vertex cut : $|z| < 30 \text{ cm}$

- EM calorimeter finely segmented : $\Delta \phi \times \Delta \eta \approx 0.01 \times 0.01$
- Tracking : Drift Chamber (DC) and Pad Chamber (PC1)
- Charge sign determination in DC
- SiVTX commissioned in 2011
- FVTX commissioned in 2012
- DAQ : Handles trigger rates 7-9 kHz
Backgrounds : Reducible and Irreducible

- Look for e^\pm, limited acceptance means can’t see missing E_T from ν, can’t identify $W \Rightarrow e + \nu_e$ definitively on event-by-event basis : rely on excess of events over background

Reducible Backgrounds : Collision-independent

- Cosmic rays
- Beam related backgrounds (fragments, halo, scattering upstream)
- Timing cuts reduce by more than factor of 5

Reducible Backgrounds : Collision-dependent

- π^0, $\eta \Rightarrow \gamma\gamma$, or direct-$\gamma$: conversion $\gamma \rightarrow e^+e^-$ yields cluster + matching track
- h^\pm + hadronic shower in EMCal: cluster + matching track
- π^0 or direct-γ with accidentally matching track from other fragments

Irreducible Backgrounds

- Irreducible in the sense they pass our cuts (high energy cluster+matching track)
- Leptonic charm, bottom decay : $\Rightarrow e^\pm+$anything
- Other W decays : $W \Rightarrow \tau + \nu_\tau \Rightarrow e\nu_e\nu_\tau\bar{\nu}_\tau$, detect e
- $Z/\gamma^* \Rightarrow e^+ + e^-$, detect one e, other outside acceptance
- $Z \Rightarrow e^+ + e^-$ rate significant compared to $W^- \Rightarrow e^- + \bar{\nu}_e$
- Z production comes with a small parity-violating asymmetry
Find the Ws: Analysis Strategy

- Trigger on high E cluster in EMCal, threshold 10 GeV, timing cut reduces cosmics
- Match cluster with track in DC and PC1,
- Determine momentum from bend angle in DC, E/p cut reduces hadronic background and mismatches; fiducial cuts on DC reduce ghost tracks
- Determine charge sign from bend angle in DC, 40 GeV track ≈ 2.3 mrad
- Resolution ≈ 1.5 mrad, remove region $|\alpha| < 1$ mrad, charge mid-ID few %
- Relative isolation cut: Energy in $R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \leq 0.4$ less than 10% of candidate cluster energy
 - Signal region 30-50 GeV unchanged
 - Background region 10-20 GeV reduced factor 10
• Identify $W^+ \rightarrow e^+ + \nu_e$ from Jacobian peak of signal events over falling background

- After cuts, background in $W^+ \rightarrow e^+$ signal region 30-50 GeV $\approx 18\%$
Identify $W^- \rightarrow e^- + \bar{\nu}_e$ from Jacobian peak of signal events over falling background

After cuts, background in $W^- \rightarrow e^-$ signal region 30-50 GeV $\approx 14\%$

χ^2 for combined results ≈ 50 for 35 DoF
Need more events to discriminate between different models of polarized PDFs
W production cross section measurement from 2009

\begin{align*}
\text{Theory curves: FEWZ and MSTW08 NLO PDF's} \\
\text{\bullet $\sigma(pp \to W^+X) \times \text{BR}(W^+ \to e^+\nu_e) = 144.1 \pm 21.2(\text{stat})^{+3.4}_{-10.3}(\text{syst}) \pm 21.5(\text{norm}) \text{ pb}$} \\
\text{\bullet $\sigma(pp \to W^-X) \times \text{BR}(W^- \to e^-\bar{\nu}_e) = 31.7 \pm 12.1(\text{stat})^{+10.1}_{-8.2}(\text{syst}) \pm 4.8(\text{norm}) \text{ pb}$} \\
\text{\bullet Theory curves from FEWZ; K. Melnikov and F. Petriello, Phys. Rev. D 70, 114017 (2006).}
\end{align*}
Measuring Sea Quark Polarizations with the Muon Arms: $W^\pm \rightarrow \mu^\pm$

- South Muon Arm $-2.2 < \eta < -1.2$; North Muon Arm $1.2 < \eta < 2.4$, $\Delta\phi = 2\pi$
- Signal is isolated high p_T muon, detected with MuTr, MuID, RPC
- Trigger on small sagitta in magnetic field + muon ID + timing cut from BBC,RPC
- Reduced collision rate of several MHz to trigger rate of few kHz dedicated to muon arms
- Absorber between vertex and MuTr, and interspersed in MuID, reduces low energy and decay background
Measuring Sea Quark Polarizations with the Muon Arms: Preliminary Results

- Preliminary results from 2011 data set

- $\sqrt{s} = 500$ GeV, Pol.$\approx 50\%$, $\int \mathcal{L}dt \approx 25$ pb$^{-1}$

- First results in this channel

- Anticipated for many years

\Rightarrow Cover different x than central arms
Further Improvements: Data from 2012 and 2013

<table>
<thead>
<tr>
<th>Year</th>
<th>√s (GeV)</th>
<th>$\int \mathcal{L} dt$ (pb$^{-1}$)</th>
<th>Pol. (%)</th>
<th>P^2L (pb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>500</td>
<td>8.6</td>
<td>39</td>
<td>1.3</td>
</tr>
<tr>
<td>2011</td>
<td>500</td>
<td>16</td>
<td>48</td>
<td>3.7</td>
</tr>
<tr>
<td>2012</td>
<td>510</td>
<td>≈ 30</td>
<td>52</td>
<td>8.1</td>
</tr>
<tr>
<td>2013 (TBD)</td>
<td>510</td>
<td>≈ 200</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

- $\int \mathcal{L} dt$ recorded luminosity within vertex cut $|z| < 30$ cm (more for μ analysis)
- Analysis of 2011 data sets being finalized
- Data from 2012 being analyzed: substantial compared to 2009 and 2011
- For μ analysis 2012 includes improved trigger, VTX/FVTX detectors to reduce background
- For e analysis, commissioning of VTX detector might improve isolation cut
- Very large data set anticipated in 2013
Anticipated W^\pm results in central and muon arms should discriminate between some models.
Projections for Central Arms: 250 pb$^{-1}$ and P=55%

• Anticipated W^{\pm} results in central and muon arms should discriminate between some models
• RHIC spin program to measure polarized sea quark distributions well underway
• Published results for central arms available:
• Substantial data sets under analysis (2011 at $\sqrt{s} = 500$ GeV, 2012 at $\sqrt{s} = 510$)
• More than 200 pb^{-1} anticipated in 2013 - combined results should discriminate between some models
• Data should allow a measurement of $\Delta \bar{d}(x) / \Delta \bar{u}(x)$ between $0.08 \lesssim x \lesssim 0.4$