Searches for New Physics in Top Events at the Tevatron

Yuri Oksuzian on behalf of CDF and D0

Moriond QCD, March 2013
Tevatron’s legacy
Top quark at Tevatron

- Observed and studied at Tevatron
- Strikingly large mass
 - $m_t = 173.18 \pm 0.94$ GeV/c^2
 - Strongest coupling to Higgs field
- $\sigma_{t\bar{t}} = 7.65 \pm 0.42$ pb (Tevatron 2012)
- Search for new physics in top quark properties.
 - Look for deviation from SM
 - Observed large A_{FB}?
- Direct searches for new physics:
 - Many BSM models predict particles couple preferably to $t\bar{t}$
 - Z', W', b', t', $t \rightarrow Zq$, anomalous coupling, dark matter...
Why study top at Tevatron?

- Tevatron is the $p\bar{p}$ collider
- Still competitive sensitivity to $q\bar{q}$ initiated new physics models, like $q\bar{q} \rightarrow Z' \rightarrow t\bar{t}$
Why study top at Tevatron?

- Tevatron is the \(p\bar{p} \) collider
- Still competitive sensitivity to \(q\bar{q} \) initiated new physics models, like \(q\bar{q} \rightarrow Z' \rightarrow t\bar{t} \)

SM:

\[
\frac{\sigma_{\text{LHC}}^{\ell\ell}}{\sigma_{\text{Tevatron}}^{\ell\ell}} \approx 25
\]

Z':

\[
\frac{\sigma_{\text{LHC}}^{Z' \rightarrow \ell\ell}}{\sigma_{\text{Tevatron}}^{Z' \rightarrow \ell\ell}} \approx 5-10 \text{, } M_{Z'} < 800 \text{ GeV}
\]

Graph:

- \(Z' \rightarrow \ell\ell \)
- \(M_{Z'} \text{ [GeV/c}^2\text{]} \)
- \(\sigma_{\text{LHC}}^{Z' \times B} / \sigma_{\text{Tevatron}}^{Z' \times B} \)

Referenced Resources:

- arXiv:1112.4928, R. Harris, S. Jain
Motivation for \(Z' \) search

- Top is very heavy, maybe indication of coupling to new physics
- Various theoretical models predict \(\bar{t}t \) resonant states: \(Z' \) in extended gauge theories, axigluons, KK states of gluon/Z, Topcolor
- Tevatron \(\bar{t}t \) forward-backward asymmetry
- 2\(\sigma \) excess of events at masses around 950 GeV at D0
Most of the searches in $t\bar{t}$ final state are done in lepton+jets final state

- Clean signature, large statistics, only one neutrino is missing

Search technique:

- $M_{t\bar{t}}$ spectrum is reconstructed by taking invariant mass of all objects (lepton, jets, missing E_T)
- ME, kinematic fitter, no kinematic constraint.

Search for a peak in $M_{t\bar{t}}$ spectrum

- Understand SM fluctuation probabilities
- Calculate Upper Limits
- Compare data with our expectations (SM or with new physics)

Top Pair Branching Fractions

- "alljets" 46%
- τ+jets 15%
- μ+jets 15%
- e+jets 15%
- "dileptons"
- "lepton+jets"

Search technique:

- Clean signature, large statistics, only one neutrino is missing

- $M_{t\bar{t}}$ spectrum is reconstructed by taking invariant mass of all objects (lepton, jets, missing E_T)
- ME, kinematic fitter, no kinematic constraint.

- Search for a peak in $M_{t\bar{t}}$ spectrum
 - Understand SM fluctuation probabilities
 - Calculate Upper Limits
 - Compare data with our expectations (SM or with new physics)
History of Z' searches
CDF analyzed full Tevatron dataset of 9.4 fb\(^{-1}\) for resonance search in lepton plus jets final state

- Require at least 3 jets, 1 lepton, missing \(E_T\) and 1 or 2 b-jets
- Reconstruct \(t\bar{t}\) invariant mass:
 - All objects in final
 - No constraint on top quark presence
- Leptophobic \(M_{Z'} > 915\) GeV

\[\text{Observed limit} \quad \text{Expected limit} \quad \text{Median expected} \quad \text{Median expected} = 1.2\%\]

\[\text{Z'}/M_K \quad \text{Topcolor Z'}\]

\[\text{CDF analyzed full Tevatron dataset of 9.4 fb}^{-1} \quad \text{for resonance search in lepton plus jets final state}\]

\[\text{Require at least 3 jets, 1 lepton, missing } E_T \text{ and 1 or 2 b-jets}\]

\[\text{Reconstruct } t\bar{t}\text{ invariant mass:}\]

- All objects in final
- No constraint on top quark presence

\[\text{Leptophobic } M_{Z'} > 915\text{ GeV}\]

\[\text{CDF analyzed full Tevatron dataset of 9.4 fb}^{-1} \quad \text{for resonance search in lepton plus jets final state}\]

\[\text{Require at least 3 jets, 1 lepton, missing } E_T \text{ and 1 or 2 b-jets}\]

\[\text{Reconstruct } t\bar{t}\text{ invariant mass:}\]

- All objects in final
- No constraint on top quark presence

\[\text{Leptophobic } M_{Z'} > 915\text{ GeV}\]

\[\text{CDF analyzed full Tevatron dataset of 9.4 fb}^{-1} \quad \text{for resonance search in lepton plus jets final state}\]

\[\text{Require at least 3 jets, 1 lepton, missing } E_T \text{ and 1 or 2 b-jets}\]

\[\text{Reconstruct } t\bar{t}\text{ invariant mass:}\]

- All objects in final
- No constraint on top quark presence

\[\text{Leptophobic } M_{Z'} > 915\text{ GeV}\]
- LHC searches for the same benchmark narrow leptophobic Z' model
- LHC is more sensitive for the mass region above TeV
 - LHC excludes $M_{Z'} > 1.5$ TeV
- However, Tevatron is still more sensitive in the region below 750 GeV
- Increased colliding energies and instantaneous luminosity at LHC makes this mass region even harder to probe

![Graph showing comparison to LHC](image)
One of the many models to explain A_{fb} predicts $pp \rightarrow Xt \rightarrow \bar{t} j t$

Default L+J event selection, but at least 5 jets in final state

Identify the jets from $tt\bar{t}$ decay using kinematic fitter

Select the jet with the largest m_{tj}

Data consistent with SM

0.61 pb to 0.02 pb for X masses ranging 200-800 GeV
4th generation t’

- Heavier than SM top quark
 - Same production and decay mechanism as in SM
- Reconstruct t’ mass using kinematic fitter
 - Simultaneous fit to reconstructed t’ mass and H_t
- Data consistent with SM at 2σ
- Set the UL on $\sigma_{t't'}$
 - D0: $M_{t'} > 296$ GeV; CDF: $M_{t'} > 358$ GeV
- Dark matter interacts with SM via \(T' \) carrying both dark matter and SM charges
- Decays: \(T'T' \rightarrow tt + XX \), \(X \) is dark matter candidate
- Signature: \(t\bar{t} \) plus large missing energy
- Search discriminant:
 - All hadronic: missing \(E_T \) significance
 - Lepton+jets: \(m_{T'} \) is \(W \) transverse mass
- Data consistent with SM
 - Limits set on \(m_{T'} \) vs \(m_X \)
In one of SM extensions Lorentz-Violating term is introduced

Lorentz violation predicts σ_{tt} dependence on time of a day

For each block of data
 ‣ Sidereal time is extracted
 ‣ σ_{tt} is measured

R+1 is the ratio of measured σ_{tt} divided on SM predcition

Data is consistent with SM
Rare Z Decays into Two Reconstructed Photons

- LEP set UL on $\text{BR}(Z \rightarrow \gamma\gamma)$ and $\text{BR}(Z \rightarrow \pi^0\gamma)$ at 5×10^{-5}
- At Tevatron $\sigma_Z \text{B}(Z \rightarrow ee) = 250$ pb. 2.5×10^6 $Z \rightarrow ee$ events
- Signal modeled by Pythia
- Main backgrounds:
 - Drell-Yan estimated from MC (54 ± 5)
 - $\gamma\gamma$, γj, and jj estimated from data sidebands fit (2251 ± 61)
- Results:
 - No excess observed
 - Best limits to date
Summary

- Tevatron has delivered unique data for top quark physics
- Wide range of property measurements and searches have been performed
 - Providing complementary results to LHC data
- CDF and D0 continue studies in top quark
- Many analyses have incorporated the full Tevatron dataset
- More information on the Tevatron results:
 - D0: http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

- Thank you!