ALICE results on light flavour hadron production in p-Pb collisions at the LHC

Philipp Lüttig
for the ALICE collaboration
Rencontres de Moriond
March 2014
Motivation

• differentiate between initial and final state effects
 • challenge at LHC: $dN_{ch}/d\eta$ in p-Pb comparable to semi-peripheral Au-Au at RHIC
 ➢ final state dense matter effects cannot be neglected

• extend probed part of nuclear wave function to very low x and high gluon densities
 ➢ saturation, parton shadowing

• probe different momentum transfer regions by selecting different particle masses
The ALICE Experiment

Tracking: ITS + TPC PID: TPC/TOF Multiplicity: VZERO

\[p_T > 0.15 \text{ GeV/c} \]
\[|\eta| < 0.8 \]
Spectra at low p_T
Average Transverse Momentum
of inclusive charged particles

- clear difference between collision systems
- \(pp \): difference in beam energy small wrt. p-Pb
- multiplicity dependence in p-Pb:
 - \(N_{\text{ch}} < 15 \): similar to pp
 - \(N_{\text{ch}} > 15 \): shape similar to Pb-Pb
 - potential superposition of pp and Pb-Pb

\[\langle p_T \rangle (\text{GeV/c}) \]

\[\begin{align*}
\text{ALICE, charged particles} \\
|\eta| < 0.3, 0.15 < p_T < 10.0 \text{ GeV/c}
\end{align*} \]

\[\begin{align*}
\text{pp } \sqrt{s} = 7 \text{ TeV} \\
p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV} \\
Pb-Pb \sqrt{s_{NN}} = 2.76 \text{ TeV}
\end{align*} \]
Average Transverse Momentum

Model Comparison

- **pp:**
 - color reconnection needed to describe data

- **p-Pb:**
 - EPOS fits data best
 - Glauber MC (superposition of pp collisions) underpredicts data

- **Pb-Pb:**
 - models cannot describe data
 - most models reproduce shape, but magnitude is underestimated
Particle Identification

- identify π, K, p via specific energy loss in the TPC and velocity in TOF
- strange hadrons via secondary decay vertex
Transverse Momentum Spectra
Identified Particles - Model Comparison

- transverse momentum spectra of different particles
- comparison to models:
 - Blast-Wave
 - EPOS-LHC
 - Krakow
 - DPMJET
Transverse Momentum Spectra
Identified Particles - Model Comparison

- DPMJET as QCD-inspired model can describe multiplicity distribution in p-Pb (not shown), but fails to describe p_T spectra
- Krakow: hydrodynamical model including initial fluctuations describes spectra for low p_T
- EPOS reproduces π and p over measured range, but larger deviations for K^0_s and Λ
Average Transverse Momentum
of identified charged particles

- multiplicity in V0A as selector for different event classes
- good agreement between charged and neutral K
- increase with multiplicity for all particle species
- slope stronger for higher particle masses
- similar mass ordering seen for pp and Pb-Pb
Particle Ratios of identified particles

- p/π ratio vs. \(p_T \)
 - p-Pb: increase at intermediate \(p_T \) and depletion at low \(p_T \) with multiplicity
 - Pb-Pb: similar effects as in p-Pb, but more pronounced

- \(\Lambda/K^0_s \) ratio vs. \(p_T \)
 - similar for p-Pb and Pb-Pb:
 - increase at intermediate \(p_T \) for larger multiplicity
 - depletion at low \(p_T \)
High p_T Results
Transverse Momentum Spectra
Identified Particles – $\pi^+ + \pi^-$

- multiplicity in V0A as selector for different event classes
- identification at high p_T based on statistical analysis of particle abundance in the relativistic rise in the TPC
- hardening of spectra with increasing multiplicity
Transverse Momentum Spectra
Identified Particles – $K^+ + K^-$

- multiplicity in V0A as selector for different event classes
- identification at high p_T based on statistical analysis of particle abundance in the relativistic rise in the TPC
- hardening of spectra with increasing multiplicity, stronger than for pions

p-Pb, $\sqrt{s_{NN}} = 5.02$ TeV

$0 < y_{cm} < 0.5$ for $p_T < 2.8$ GeV/c

$|y_{cm}| < 0.3$ for $p_T > 2.8$ GeV/c
Transverse Momentum Spectra
Identified Particles – $p + \bar{p}$

- multiplicity in V0A as selector for different event classes
- identification at high p_T based on statistical analysis of particle abundance in the relativistic rise in the TPC
- hardening of spectra with increasing multiplicity, even stronger than for K
Transverse Momentum Spectra
of inclusive charged particles

- based on data from 2012 (pilot run)
- limited statistics (only up to $p_T = 20$ GeV/c)
Transverse Momentum Spectra
of inclusive charged particles

• higher statistics by including data from 2013
• forward η added, slightly harder spectrum
• measurement extended to $p_T = 50$ GeV/c
• reduced statistical errors
• in ratio, correlated uncertainties are cancelled
NB: pp Reference Spectrum

no measurement available at $\sqrt{s} = 5.02$ TeV:

- $p_T < 5$ GeV/c: interpolation of cross section for fixed p_T as function of energy

- $p_T > 5$ GeV/c: scaling of measured data at $\sqrt{s} = 7$ TeV with relative change from NLO-pQCD

- $p_T > 20$ GeV/c: parametrization with power law
Nuclear Modification Factor
for p-Pb collisions

\[R_{pPb} = \frac{d^2 N_{pPb} / dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma_{pp} / dp_T d\eta} \]

- reference in \(|\eta| < 0.8\)
- \(p_T < 1 \text{ GeV}/c\): suppression
- \(1 \text{ GeV}/c < p_T < 3 \text{ GeV}/c\): Cronin-like enhancement
- \(p_T > 3 \text{ GeV}/c\): consistent with unity
Summary

Spectra at low p_T:

- $<p_T>$ as function of multiplicity for (un)identified charged hadrons
 - increase with multiplicity
 - rise stronger with higher particle mass
- Models incorporating final state effects give a better description of the data
- clear evolution with multiplicity of p_T spectra, reminiscent of Pb-Pb behaviour
 (usually attributed to collective phenomena)

High p_T Results:

- p_T spectra of charged pions, Kaons and protons up to $p_T = 15$ GeV/c for different multiplicity classes
- p_T spectra and nuclear modification factor for inclusive charged hadrons
 - up to $p_T = 50$ GeV/c
 - R_{pPb} consistent with unity at high p_T