Measurements of the Higgs boson properties at LHC

Nicola De Filippis - Politecnico & INFN, Bari

On behalf of ATLAS and CMS collaborations

XLIXth Rencontres de Moriond, 2014: QCD AND HIGH ENERGY INTERACTION
22-29 Mar 2014, La Thuile
Outline

- Introduction / History
- Measurement of Higgs properties:
 - mass
 - spin/parity
 - width

N. B.
- Details about $H \rightarrow VV$ analyses in the talk by T. Donszelman
- New Higgs combination results in the talk by B. Di Micco
- $H \rightarrow ff$ results in the talk by R. Lane
- BSM Higgs results in the talk by P. Meridiani.
A bit of history: where we are

4th July 2012: Announcement of the discovery of a new boson, compatible with the BEH particle.

Moriond 2013: Measurement of the properties in favour of a 0^+ particle and consistent with SM

October 2013: Nobel prize in Physics awarded to prof. F. Englert and P. Higgs.

Study the EWK SSB and tests of SM predictions through the measurements of the Higgs properties:

• mass
• spin
• width
• couplings
• ..etc
Higgs decay channels

At $m_H = 125$ GeV:

- $H(bb) \approx 57\%$
- $H(WW) \approx 22\%$
- $H(\tau\tau) \approx 6.2\%$
- $H(ZZ) \approx 2.8\%$
- $H(\gamma\gamma) \approx 0.23\%$

What really matters for the precise measurement of the properties are:
the S/B ratio, the mass peak reconstruction quality and the mass resolution
Mass measurements
H→ZZ→4l: the most sensitive channel

- **Signatures:** $4e$, 4μ and $2e2\mu$ final state
 - clean but demanding the **highest lept. eff.**
 - $\sigma \times \text{BR} \approx \text{few fb}$
 - $S/B \approx 2$
 - mass peak is reconstructed with resolution 1-2%

- **Backgrounds:** Irreducible: ZZ*
 Reducible: Z+jets, tt+jets, WZ+jets

- **Challenges for the mass measurement:**
 - maximize efficiency for low p_T leptons
 - precise calibration of lepton p_T scale and resolution
 - calculation of per event 4l mass error (CMS)

- **Strategy for mass measurement:**
 - **CMS:** use m_{4l} vs kin. discriminant (MELA) for S/B separation + **event per event mass error**
 - **ATLAS:** use m_{4l} for S/B separation. Categorize events into VBF-like, VH-like and untagged.
Mass meas.: $H \rightarrow ZZ \rightarrow 4l$

CMS: 3D fit with m_{4l}, MELA, $\sigma(m_{4l})/m_{4l}$

$\sigma(m_{4l})/m_{4l}$ computed from the uncertainty on p_T/E of each lepton $\rightarrow 8\%$ of improvement on the uncertainty on mass

ATLAS: 1D fit to m_{4l} +

kinematic constraint to Z_1 candidate

<table>
<thead>
<tr>
<th></th>
<th>CMS</th>
<th>ATLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured mass</td>
<td>125.6 ± 0.4 (stat) ± 0.2 (syst) GeV</td>
<td>$124.3^{+0.6}{-0.5}$ (stat) $^{+0.5}{-0.3}$ (syst) GeV</td>
</tr>
<tr>
<td>Syst. Uncert.</td>
<td>Electron e/p-scale ≈ 0.1-$0.3%$</td>
<td>Electron e/p-scale ≈ 0.2-$0.4%$</td>
</tr>
<tr>
<td></td>
<td>Muon p-scale $\approx 0.1%$</td>
<td>Muon p-scale ≈ 0.1-$0.2%$</td>
</tr>
</tbody>
</table>
H→γγ in a nutshell

Important channel for Higgs with 110< m_H<140 GeV
- clear signature of two isolated high E_T photons
- small B.R. (0.2%)
- S/B ≈1/1 ÷ 1/20
- narrow mass peak with mass resolution 1-2%

Background:
- irreducible: γγ→γγ, qqbar, qg→γγ from QCD
- reducible: pp → γ+jets (1 prompt γ + 1 fake γ)
 - pp → jets (2 fake γ), fake γ from π^0→γγ

Challenges for mass measurement:
- maintain good mass-resolution in high-pile-up (for both energy and angle).
- understand **electron/photon extrapolation** for E-scale (material, shower description, etc.).

Strategy for the analysis:
- events categorized according to photon resolution and kinematics.
- additional exclusive channels targeting VBF and VH
Mass meas.: $H \rightarrow \gamma\gamma$ and combination

- signal extracted from simultaneous S+B fit to all categories.
- background modeled with polynomials or falling power-law or exponentials.

<table>
<thead>
<tr>
<th></th>
<th>CMS</th>
<th>ATLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meas. mass ($H \rightarrow \gamma\gamma$)</td>
<td>125.4 ± 0.5(stat) ± 0.6(syst) GeV</td>
<td>126.8 ± 0.2(stat) ± 0.7(syst) GeV</td>
</tr>
<tr>
<td>Combination $H \rightarrow ZZ \rightarrow 4l + H \rightarrow \gamma\gamma$</td>
<td>125.7 ± 0.3(stat) ± 0.3(syst) GeV</td>
<td>125.5+0.2(stat)-0.5-0.6(syst) GeV</td>
</tr>
</tbody>
</table>
Spin/parity
Spin-parity: J^{CP} hypotheses

- Same approach for **ATLAS** and **CMS** to probe the spin from angular distributions
- First we measure the compatibility with the 0^+ hypothesis
- Then we test alternative hypotheses by using the most general scattering amplitude for different spin/parity combinations

Spin 0:
\[
A(X_{J=0} \rightarrow VV) = v^{-1} \left(g_1 m_v^2 \epsilon_1^* \epsilon_2^* + g_2 f^{(1)}_{\mu \nu} f^{* (2)}_{\mu \nu} + g_3 f^{(1)}_{\mu \nu} f^{* (2)}_{\mu \alpha} \frac{q_{\mu} q_{\alpha}}{\Lambda^2} + g_4 f^{(1)}_{\mu \nu} \bar{f}^{* (2)}_{\mu \nu} \right)
\]

Spin 1:
\[
A(X_{J=1} \rightarrow VV) = g_1^{(1)} \left[(\epsilon_1^* q)(\epsilon_2^* \epsilon_\chi) + (\epsilon_2^* q)(\epsilon_1^* \epsilon_\chi) \right] + g_2^{(1)} \epsilon_{\alpha \mu \nu} \beta \epsilon_\chi^* \epsilon_1^* \epsilon_2^* \frac{1}{2} q^\beta
\]

- So far test done with $H \rightarrow ZZ \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW \rightarrow 2\ell 2\nu$ analyses
Spin-parity: $0^+ \text{ vs } 0^-$ from $H \rightarrow ZZ \rightarrow 4l$

CMS $H \rightarrow ZZ \rightarrow 4l$ uses a 2D likelihood for the spin measurement with MELA KD:

$$\mathcal{L}_{\text{2D}}^P \equiv \mathcal{L}_{\text{2D}}^P(D_{\text{bkg}}, D_{JP}) \quad D_{JP} = \left[1 + \frac{\mathcal{P}_P^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_4 \ell)}{\mathcal{P}_{0+}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_4 \ell)}\right]^{-1}$$

ATLAS $H \rightarrow ZZ \rightarrow 4l$ uses the five angles and the two invariant masses, combined to build a BDT discriminant

ATLAS and CMS: exclude 0^- hypothesis at > 3σ level

0$^-$ hypothesis is excluded @ 97.8% CL
Spin-parity: $0^+ vs 2^+_m$ from $H \rightarrow WW \rightarrow 2l2\nu$

Hypothesis test from 2D template fit to data:

- **CMS**: m_\parallel vs m_T
- **ATLAS**: use two BDT discriminants ($\Delta \phi_\parallel$, m_\parallel, m_T)
 - BDT_0 (discriminate SM from background)
 - BDT_{alt} (discriminate alternative hypotheses from background).

Observed results disfavor 2^+ hypothesis at $>3\sigma$
Statistical analysis: J^P summary

CMS $H \to ZZ \to 4l$

<table>
<thead>
<tr>
<th>J^P model</th>
<th>J^P production</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^-</td>
<td>any pseudoscalar (0^-), discriminate against SM Higgs boson</td>
</tr>
<tr>
<td>0^+_h</td>
<td>any BSM scalar with higher dim operators (0^+_h)</td>
</tr>
<tr>
<td>1^-</td>
<td>$q\bar{q} \to X$ Exotic vector (1^-), $q\bar{q} \to X$</td>
</tr>
<tr>
<td>1^-</td>
<td>any Exotic vector (1^-), decay-only information</td>
</tr>
<tr>
<td>1^+_h</td>
<td>$q\bar{q} \to X$ Exotic pseudovector (1^+_h), $q\bar{q} \to X$</td>
</tr>
<tr>
<td>1^+_h</td>
<td>any Exotic pseudovector (1^+_h), decay-only information</td>
</tr>
<tr>
<td>2^+_h</td>
<td>$gg \to X$ KK Graviton-like with minimal couplings (2^+_m), $gg \to X$</td>
</tr>
<tr>
<td>2^+_h</td>
<td>$q\bar{q} \to X$ KK Graviton-like with minimal couplings (2^+_m), $q\bar{q} \to X$</td>
</tr>
<tr>
<td>2^+_h</td>
<td>any KK Graviton-like with minimal couplings (2^+_m), decay-only in</td>
</tr>
<tr>
<td>2^+_h</td>
<td>$gg \to X$ KK Graviton-like with SM in the bulk (2^+_h), $gg \to X$</td>
</tr>
<tr>
<td>2^+_h</td>
<td>$gg \to X$ BSM tensor with higher dim operators (2^+_h), $gg \to X$</td>
</tr>
<tr>
<td>2^-_h</td>
<td>$gg \to X$ BSM pseudotensor with higher dim operators (2^-_h), $gg \to X$</td>
</tr>
</tbody>
</table>

ATLAS

- **$H \to \gamma\gamma$**
 - $\sqrt{s} = 8$ TeV, $L = 20.7$ fb$^{-1}$
 - $H \to ZZ \to 4l$
 - $\sqrt{s} = 8$ TeV, $L = 20.7$ fb$^{-1}$

- **$H \to WW^* \to e\nu\mu\nu$**
 - $\sqrt{s} = 8$ TeV, $L = 20.7$ fb$^{-1}$

![Graph showing CL$_s$ expected assuming $J^P = 0^+$](image)

- **Strong exclusion of a spin-1 resonance**
- **0^- excluded at $>3\sigma$ level**
- **Graviton-like resonances excluded at $>3\sigma$**

N. De Filippis

Moriond QCD, La Thuile, Italy, March 22-29, 2014
Width measurements
Direct constraint on the Γ_H

- Standard model prediction: $\Gamma_{H}^{\text{SM}} \approx 4.15$ MeV at $m_H = 125.6$ GeV
- Direct measurement heavily limited by experimental resolution
- Current upper limits from $\gamma\gamma(4l)$ decay modes by a likelihood scan

$$\Gamma_H < 6.9 \text{ GeV @ 95\%C.L.}$$

$$\Gamma_H < 3.4 \text{ GeV @ 95\%C.L.}$$
Constraint on the Γ_H from $H^*(126) \rightarrow ZZ$

- **Off-shell $H^*(126) \rightarrow VV$ ($V=W,Z$)**
 - In N. Kauer and G. Passarino, JHEP 08 (2012) 11 it has been shown that the off-shell production cross section is sizeable at high ZZ invariant mass.
 - that comes from a peculiar cancellation between BW trend and $\Gamma(H \rightarrow VV)$
 - Enhancement of **7.6%** of total cross section in the ZZ final state

<table>
<thead>
<tr>
<th>Total [pb]</th>
<th>$M_{ZZ} > 2M_Z$ [pb]</th>
<th>R [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gg \rightarrow H \rightarrow all$</td>
<td>19.146</td>
<td>0.1525</td>
</tr>
<tr>
<td>$gg \rightarrow H \rightarrow ZZ$</td>
<td>0.5462</td>
<td>0.0416</td>
</tr>
</tbody>
</table>
Constraint on the Γ_H from $H^*(126) \to ZZ$

F. Caola, K. Melnikov (Phys. Rev. D88 (2013) 054024) and J. Campbell et al. (arXiv:1311.3589) showed how this feature can be turned into a constraint on the total Higgs width

\[
\frac{d\sigma_{gg \to H \to ZZ}}{dm_{ZZ}^2} \propto g_{ggH}^2 g_{HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}
\]

\[
\frac{\sigma_{on-peak}}{\sigma_{gg \to H \to ZZ}} \propto \frac{\frac{g_{ggH}^2 g_{HZZ}^2}{\Gamma_H}}{\Gamma_H}, \quad \frac{\sigma_{off-peak}}{\sigma_{gg \to H \to ZZ}} \propto g_{ggH}^2 g_{HZZ}^2
\]

--> so measuring the ratio of $\sigma^{\text{off-peak}}$ and $\sigma^{\text{on-peak}} \rightarrow$ measurement of Γ_H

\[
\sigma_{on-peak}^{\text{gg \to H \to ZZ}} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot \text{BR})_{SM} \equiv \mu (\sigma \cdot \text{BR})_{SM}
\]

\[
\sigma_{off-peak}^{\text{gg \to H \to ZZ}} = \frac{\kappa_g^2 \kappa_Z^2 \cdot \sigma_{off-peak,SM}^{\text{gg \to H \to ZZ}}}{\sigma_{on-peak}^{\text{gg \to H \to ZZ}}} = \mu r \frac{\sigma_{off-peak,SM}^{\text{gg \to H \to ZZ}}}{\sigma_{on-peak}^{\text{gg \to H \to ZZ}}}
\]

Once μ is fixed a determination of r is obtained and so for Γ_H:

μ from CMS 4l paper arXiv:1312.5333 and provide result in two ways:

\[
\begin{align*}
\mu & \text{ expected} \rightarrow \text{ use expected signal strength} \\
\mu & \text{ observed} \rightarrow \text{ use observed signal strength}
\end{align*}
\]

The interference with continuum $gg \to ZZ$ is taken into account at high mass \rightarrow gg2VV/MCFM

VBF production is 10% at high mass \rightarrow PHANTOM
Constraint on the Γ_H from $H^*(126) \to ZZ \to 4l$

$H \to ZZ \to 4l$ analysis:
- same as CMS, arXiv:1312.5333
- $m_{4l} > 220$ GeV region analysed
- a NEW MELA discriminant for $gg \to ZZ$ production (including signal background and interference) vs $qq \to ZZ$:

![Graphs showing the constraint on Γ_H from $H^*(126) \to ZZ \to 4l$.](image)

\[
D_{gg,a} = \frac{P_{gg,a}}{P_{gg,a} + P_{qq}}
\]
Constraint on the Γ_H from $H^*(126) \rightarrow ZZ \rightarrow 2l2\nu$

H→ZZ→2l2ν analysis:

- cuts on $p_T(Z)$ and $E_{\text{T,miss}}$
- vetoing 3rd lepton and b-tagged jets
- Events split in 3 purity categories according to number of selected jets ($p_T > 30$ GeV and $|\eta| < 4.7$)
 - VBF-like: two jets with $m_{JJ} > 500$ GeV and $|\Delta\eta_{JJ}| > 4$
 - ≥ 1 jets: excluding events in VBF-like category
 - 0 jets
- discriminating variables:
 - m_T for 0 and 1-jet category:
 $$m_T^2 = \left[\sqrt{p_{T,\ell\ell}^2 + m_{\ell\ell}^2} + \sqrt{E_{\text{T,miss}}^2 + m_{\ell\ell}^2} \right]^2 - \left[\vec{p}_{T,\ell\ell} + \vec{E}_{\text{T,miss}} \right]^2$$
 - $E_{\text{T,miss}}$ for VBF-like category

Constraint on the Γ_H from $H^*(126) \rightarrow ZZ \rightarrow 2l2\nu$
Constraint on the Γ_H from $H^*(126) \rightarrow ZZ$

4l analysis: 2D likelihood in m_{4l} and D_g^g

2l2ν analysis: 1D likelihood with m_T or $E_{t\text{miss}}$

Combined fit using the measured yield at the peak in $H \rightarrow ZZ \rightarrow 4l$ as constraint

<table>
<thead>
<tr>
<th></th>
<th>4l</th>
<th>2l2ν</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected 95% CL</td>
<td>11.5</td>
<td>10.7</td>
<td>8.5</td>
</tr>
<tr>
<td>Observed 95% CL</td>
<td>6.6</td>
<td>6.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Observed 95% CL, Γ_H (MeV)</td>
<td>27.4</td>
<td>26.6</td>
<td>17.4</td>
</tr>
<tr>
<td>Observed best fit, r</td>
<td>$0.5^{+2.3}_{-0.5}$</td>
<td>$0.2^{+2.2}_{-0.2}$</td>
<td>$0.3^{+1.5}_{-0.3}$</td>
</tr>
<tr>
<td>Observed best fit, Γ_H (MeV)</td>
<td>$2.0^{+9.6}_{-2.0}$</td>
<td>$0.8^{+9.1}_{-0.8}$</td>
<td>$1.4^{+8.1}_{-1.4}$</td>
</tr>
</tbody>
</table>

Obs. (exp.) @95\% C.L.:

$\Gamma_H < 4.2 (8.5) \Gamma_H^{SM}$

$\Gamma_H < 17.4 (35.3) \text{ MeV}$

Considerable improvement w.r.t. previous CMS direct constraint on Γ_H
Conclusions

- Run I data from CMS and ATLAS proved the existence of a boson from the BEH mechanism and the consistency with the predictions of the SM.
- We moved to a “precision measurements” phase now.
- Mass is measured precisely.
- Data disfavors all alternative spin hypotheses tested at more than 95% C.L.
- **First experimental constraint on Higgs total width by \(H^*(126) \rightarrow ZZ \)**
 - \(\Gamma / \Gamma_{SM} < 4.2 \) (8.5 expected) @ 95% CL
 - \(\Gamma < 17.4 \) MeV (35.3 MeV expected) @ 95% CL
Backup
The origin of the BEH mechanism

<table>
<thead>
<tr>
<th>Article</th>
<th>Reception date</th>
<th>Publication date</th>
</tr>
</thead>
</table>
SM Higgs production at LHC

Gluon-gluon fusion:

\rightarrow radiative corrections at:

- NLO QCD
- NNLO QCD
- NNLL QCD
- NLO EW

Cross section [pb] at $m_H = 125.5$ GeV

<table>
<thead>
<tr>
<th>Process</th>
<th>$\kappa_{\text{NNLO/NLO}}$</th>
<th>Scale</th>
<th>PDF+a_s</th>
<th>Total error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggF</td>
<td>$+25%$ ($+100%$)</td>
<td>$+12%$ - $7%$</td>
<td>$\pm8%$</td>
<td>$+20$ - $15%$</td>
</tr>
<tr>
<td>VBF</td>
<td>$<1%$ ($+5$ - $10%$)</td>
<td>$\pm1%$</td>
<td>$\pm4%$</td>
<td>$\pm5%$</td>
</tr>
<tr>
<td>WH/ZH</td>
<td>$+2$ - $6%$ ($+30%$)</td>
<td>$\pm1%$</td>
<td>$\pm4%$</td>
<td>$\pm5%$</td>
</tr>
<tr>
<td>ttH</td>
<td>-1 ($+5$ - $20%$)</td>
<td>$+4%$ - $10%$</td>
<td>$\pm8%$</td>
<td>$+12$ - $18%$</td>
</tr>
</tbody>
</table>
Data samples: CMS / ATLAS

- Excellent machine and detector performance
- Very high quality data
 - $\approx 95\%$ of delivered data were recorded
 - $\approx 90\%$ certified and used in physics analyses
- Dataset of 2011-2012 of:
 - $L = 5.1$ (CMS) – 4.7 (ATLAS) fb^{-1} (7 TeV)
 - $L = 19.7$ (CMS) – 20.7 (ATLAS) fb^{-1} (8 TeV)
- Successfull pileup handling
CMS in a nutshell

\[\eta < 2.5 : \text{Tracker} \]
\[\sigma / p_T = 10^{-4} p_T + 0.005 \]

\[\eta < 4.9 : \text{EM Calorimeter} \]
\[\sigma / E = 0.03 / \sqrt{E} + 0.003 \]

\[\eta < 4.9 : \text{HAD Calorimeter} \]
\[\sigma / E = 1.0 / \sqrt{E} + 0.05 \]

\[\eta < 2.4 : \text{Muon spectrometer} \]
\[\sigma / p_T = 0.10 \text{ (1TeV muons)} \]
ATLAS in a nutshell
<table>
<thead>
<tr>
<th>Sub System</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnet(s)</td>
<td>Solenoid (within EM Calo) 2T</td>
<td>Solenoid 3.8T</td>
</tr>
<tr>
<td></td>
<td>3 Air-core Toroids</td>
<td>Calorimeters Inside</td>
</tr>
<tr>
<td>Inner Tracking</td>
<td>Pixels, Si-strips, TRT</td>
<td>Pixels and Si-strips</td>
</tr>
<tr>
<td></td>
<td>PID w/ TRT and dE/dx</td>
<td>PID w/ dE/dx</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{p_T}/p_T \sim 5 \times 10^{-4} p_T \oplus 0.01$</td>
<td>$\sigma_{p_T}/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$</td>
</tr>
<tr>
<td>EM Calorimeter</td>
<td>Lead-Larg Sampling</td>
<td>Lead-Tungstate Crys. Homogeneous</td>
</tr>
<tr>
<td></td>
<td>w/ longitudinal segmentation</td>
<td>w/o longitudinal segmentation</td>
</tr>
<tr>
<td></td>
<td>$\sigma_E/E \sim 10%/\sqrt{E} \oplus 0.007$</td>
<td>$\sigma_E/E \sim 3%/\sqrt{E} \oplus 0.5%$</td>
</tr>
<tr>
<td>Hadronic Calorimeter</td>
<td>Fe-Scint. & Cu-Larg (fwd)</td>
<td>Brass-scint.</td>
</tr>
<tr>
<td></td>
<td>$\sigma_E/E \sim 50%/\sqrt{E} \oplus 0.03$</td>
<td>$\sigma_E/E \sim 100%/\sqrt{E} \oplus 0.05$</td>
</tr>
<tr>
<td></td>
<td>$\geq 11 \lambda_0$</td>
<td>$\geq 7 \lambda_0$</td>
</tr>
<tr>
<td>Muon Spectrometer System</td>
<td>Instrumented Air Core (std. alone)</td>
<td>Instrumented Iron return yoke</td>
</tr>
<tr>
<td></td>
<td>$\sigma_{p_T}/p_T \sim 4%$ (at 50 GeV)</td>
<td>$\sigma_{p_T}/p_T \sim 1%$ (at 50 GeV)</td>
</tr>
<tr>
<td></td>
<td>$\sim 11%$ (at 1 TeV)</td>
<td>$\sim 10%$ (at 1 TeV)</td>
</tr>
</tbody>
</table>
Statistical approach – ATLAS and CMS

- Hypothesis testing using the Profile likelihood ratio and CL_s method
 \[L(data | \mu, \theta) = Poisson(data | \mu \cdot s(\theta) + b(\theta)) \cdot p(\tilde{\theta} | \theta) \]
 \[\tilde{q}_\mu = -2 \ln \frac{L(data | \mu, \hat{\theta}_\mu)}{L(data | \hat{\mu}, \hat{\theta})} \] is the test statistics
 \[CL_s(\mu) = \frac{P\left(q_\mu \geq q_\mu^{obs} | \mu, s(\hat{\theta}_\mu^{obs}) + b(\hat{\theta}_\mu^{obs})\right)}{P\left(q_\mu \geq q_\mu^{obs} | b(\hat{\theta}_\mu^{obs})\right)} \] for exclusion
 p-value: probability that the background can fluctuate to give an excess of events equal or larger than what observed

- Sistematic uncertainties and correlations modelled by introduction nuisance parameters \(\theta \) with related distribution

- Choice of parameters of interest depends on test with the remaining parameters being “profiled” (set to the values that maximise the likelihood function for the given fixed values of the parameter of interest)
H→ZZ→4l analysis: lepton scale

CMS:

Electron scale calibrations flow

- ECAL cluster calibrations
- Absolute scale corrections (on Z→ee), dependent on f(run, η, R9)
- Residual corrections for linearity vs p_T (check with Z→4e: $m(4e)=91.19 \pm 0.58$ GeV)

Muon scale corrections with MuScle fit

ATLAS:

- uncertainty on the energy scale for electrons with $E_T < 15$ GeV is verified using $J/\psi \rightarrow ee$ decays; agreement at the level of < 1%, → uncertainty on mass measurement 0.1%.
- The uncertainty on the global mass scale coming from muons is estimated to be 0.2%(0.1%) for the 4µ (2µ2e)
H→ZZ→4l analysis: lepton resolution

CMS:
Extra smearings derived and applied to the MC to match the resolution in data
- in categories of η (different material, ECAL) and R₉ for electrons
- in η, p_T categories for muons: improved by using MuScle fit

ATLAS:
Use of Z-mass constraint to improve resolution
Lepton momentum uncertainty propagated to predict m_{4l} uncertainty: $D_{mass} = \sigma_{m4l}/m_{4l}$

3D fit for the mass: $P(m_{4l}, D^{kin}_{bkg}, D_{mass})$

- 8% exp. improvement on mass uncertainty from D_{mass}
- Average resolution is substituted, event-by-event, with D_{mass}.
- wrt Moriond: resolution tails are also modified per-event
- D_{mass} calibrated with Z, J/Ψ, Y resonances

Systematics from the data-MC agreement in $Z\rightarrow ll$ events:
- electron and muon resolution/per-event: 20%
- D_{mass} validated with $Z\rightarrow 4l$
H→ZZ→4l analysis: systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>Signal (m_{ll}=126 GeV)</th>
<th>Backgrounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gluon fusion</td>
<td>VBF</td>
</tr>
<tr>
<td>α_s + PDF (gg)</td>
<td>7.2%</td>
<td>-</td>
</tr>
<tr>
<td>α_s + PDF (qq)</td>
<td>-</td>
<td>2.7%</td>
</tr>
<tr>
<td>missing high-orders</td>
<td>7.5%</td>
<td>0.2%</td>
</tr>
<tr>
<td>signal acceptance</td>
<td>2%</td>
<td>-</td>
</tr>
<tr>
<td>BR(H → ZZ)</td>
<td>2%</td>
<td>-</td>
</tr>
<tr>
<td>luminosity</td>
<td>2.6%</td>
<td>-</td>
</tr>
<tr>
<td>muon efficiency</td>
<td>4.3% (4µ), 2.1% (2e2µ)</td>
<td>-</td>
</tr>
<tr>
<td>electron efficiency</td>
<td>10% (4e), 4.3% (2e2µ)</td>
<td>-</td>
</tr>
<tr>
<td>control region</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal yield</td>
<td>4µ</td>
</tr>
<tr>
<td>Muon reconstruction and identification</td>
<td>±0.8</td>
</tr>
<tr>
<td>Electron reconstruction and identification</td>
<td>-</td>
</tr>
<tr>
<td>Reducible background (inclusive analysis)</td>
<td>±24</td>
</tr>
<tr>
<td>Migration between categories</td>
<td></td>
</tr>
<tr>
<td>ggF/VBF/VH contributions to VBF–like cat.</td>
<td>±32/11/11</td>
</tr>
<tr>
<td>ZZ* contribution to VBF–like cat.</td>
<td>±36</td>
</tr>
<tr>
<td>ggF/VBF/VH contributions to VH–like cat.</td>
<td>±15/5/6</td>
</tr>
<tr>
<td>ZZ* contribution to VH–like cat.</td>
<td>±30</td>
</tr>
<tr>
<td>Mass measurement</td>
<td>4µ</td>
</tr>
<tr>
<td>Lepton energy and momentum scale</td>
<td>±0.2</td>
</tr>
</tbody>
</table>
H→ZZ→4l: likelihood

- **ATLAS** uses a 1D likelihood with \(m_{4l} \) as discriminating variable
- **CMS** uses a 3D likelihood for:
 - exclusion limits, signal significance, signal strength \(\mu = \sigma/\sigma_{SM} \)

Events split in:
- 0/1 jet category
- di-jets with at least two jets
$H \rightarrow ZZ \rightarrow 4l$: p-value and σ_{95}/σ_{SM}

- **Observation at 95% C.L.:**
 - $114.5 < m_H < 119.0$ GeV
 - $129.5 < m_H < 832.0$ GeV

- **Experiment:**
 - $115 < m_H < 740$ GeV

- **Expected:**
 - $115 < m_H < 740$ GeV

Observed and Expected Significance:

<table>
<thead>
<tr>
<th>obs(exp)</th>
<th>1D sig.</th>
<th>2D sig.</th>
<th>3D sig.</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>expected</td>
<td>5.6σ</td>
<td>6.6σ</td>
<td>6.7σ</td>
<td>1</td>
</tr>
<tr>
<td>observed</td>
<td>5.0σ</td>
<td>6.9σ</td>
<td>6.8σ</td>
<td>0.93</td>
</tr>
</tbody>
</table>
$H \rightarrow ZZ \rightarrow 4l$, $H \rightarrow \gamma\gamma$: p-value

\bar{p}_0 min @ $m_H = 124.3$ GeV
6.6σ (4.4σ expected)

\bar{p}_0 min @ $m_H = 126.5$ GeV
7.4σ (4.3σ expected)

\bar{p}_0 min @ $m_H = 125$ GeV
3.2σ (4.2σ expected)

$\min @ m_H = 146$ GeV
(2.7σ)

$\min @ m_H = 125.6$ GeV
6.8σ (6.7σ expected)
Signal strength $\mu = \sigma / \sigma_{\text{SM}}$

μ from a fit to data for a fixed mass hypothesis corresponding to the measured value

CMS $H \rightarrow ZZ \rightarrow 4l$ @ mass $m_H = 125.6$ GeV

<table>
<thead>
<tr>
<th>Category</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1-jet</td>
<td>0.83 $^{+0.31}_{-0.25}$</td>
</tr>
<tr>
<td>di-jet</td>
<td>1.45 $^{+0.89}_{-0.62}$</td>
</tr>
<tr>
<td>combined</td>
<td>$0.93^{+0.26}{-0.23}$ (stat.) $^{+0.13}{-0.09}$ (syst.)</td>
</tr>
</tbody>
</table>

μ consistent with 1 within uncertainties

ATLAS

$m_H = 125.5$ GeV

<table>
<thead>
<tr>
<th>Process</th>
<th>σ(stat)</th>
<th>σ(sys)</th>
<th>σ(theo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma \gamma$</td>
<td>$\mu = 1.56^{+0.33}_{-0.28}$</td>
<td>± 0.23</td>
<td>± 0.15</td>
</tr>
<tr>
<td>Low p_T</td>
<td>$\mu = 1.6^{+0.5}_{-0.4}$</td>
<td>± 0.3</td>
<td>± 0.15</td>
</tr>
<tr>
<td>High p_T</td>
<td>$\mu = 1.7^{+0.7}_{-0.6}$</td>
<td>± 0.5</td>
<td>± 0.14</td>
</tr>
<tr>
<td>2 jet high mass (VBF)</td>
<td>$\mu = 1.9^{+0.6}_{-0.6}$</td>
<td>± 0.6</td>
<td>± 0.14</td>
</tr>
<tr>
<td>VH categories</td>
<td>$\mu = 1.3^{+1.2}_{-1.1}$</td>
<td>± 0.9</td>
<td>± 0.14</td>
</tr>
</tbody>
</table>

CMS, arXiv:1312.5333, submitted to PRD
Signal strength $\mu_{\text{ggH,ttH}}, \mu_{\text{VBF,VH}}$

Data fitted separating the production through couplings to fermions (ggH, ttH) or vector bosons (VBF, VH)

CMS H\toZZ\to4l @ mass $m_H=125.6\text{ GeV}$

ATLAS @ mass $m_H=125.5\text{ GeV}$

In a model-independent way (i.e. without assumptions on the Higgs boson BR):

<table>
<thead>
<tr>
<th>Coupling</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggH,ttH</td>
<td>$0.80^{+0.46}_{-0.36}$</td>
</tr>
<tr>
<td>VBF,VH</td>
<td>$1.7^{+2.2}_{-2.1}$</td>
</tr>
</tbody>
</table>

N. De Filippis
Moriond QCD, La Thuile, Italy, March 22-29, 2014
H→γγ in a nutshell

Similar analysis strategy for both CMS and ATLAS:

- Events categorized according to photon resolution and kinematics.
- Additional exclusive channels targeting VBF and associated production.
- Signal extracted from simultaneous S+B fit to all categories
- Background modeled with polynomials or falling power-law or exponentials
- Analytic signal model accounting for data/MC corrections and associated uncertainties

\[m_H = 126.8 \pm 0.2 \text{ (stat.)} \pm 0.7 \text{ (syst.) GeV} \]

\[m_H = 125.4 \pm 0.5 \text{ (stat.)} \pm 0.6 \text{ (syst.) GeV} \]
H→γγ: p-value and σ_{95}/σ_{SM}

p_0 min @ $m_H = 126.5$ GeV
7.4σ (4.3σ expected)

CMS PAS-HIG-13-002

σ^0 min @ $m_H = 125$ GeV
3.2σ (4.2σ expected)

N. De Filippis
Moriond QCD, La Thuile, Italy, March 22-29, 2014
H→γγ: systematics

CMS:

<table>
<thead>
<tr>
<th>Sources of systematic uncertainty</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per photon</td>
<td></td>
</tr>
<tr>
<td>Energy resolution ($\Delta \sigma/E_{MC}$) $R_\eta > 0.94$ (low η, high η)</td>
<td>0.23%, 0.72%</td>
</tr>
<tr>
<td>Energy scale ($</td>
<td>E_{data} - E_{MC}</td>
</tr>
<tr>
<td>Energy scale ($</td>
<td>E_{data} - E_{MC}</td>
</tr>
<tr>
<td>Photon identification efficiency</td>
<td>1.0%</td>
</tr>
<tr>
<td>$R_\eta > 0.94$ efficiency (results in class migration)</td>
<td>4.0%</td>
</tr>
<tr>
<td>$R_\eta < 0.94$ efficiency (results in class migration)</td>
<td>6.5%</td>
</tr>
<tr>
<td>Photon identification BDT</td>
<td>±0.01 (shape shift)</td>
</tr>
<tr>
<td>Photon energy resolution BDT</td>
<td>±10% (shape scaling)</td>
</tr>
</tbody>
</table>

ATLAS:

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%) on signal yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>±0.5</td>
</tr>
<tr>
<td>Photon identification</td>
<td>±2.4</td>
</tr>
<tr>
<td>Isolation</td>
<td>±1.0</td>
</tr>
<tr>
<td>Photon energy scale</td>
<td>±0.25</td>
</tr>
<tr>
<td>ggF (theory), tight high-mass two-jet cat.</td>
<td>±48</td>
</tr>
<tr>
<td>ggF (theory), loose high-mass two-jet cat.</td>
<td>±28</td>
</tr>
<tr>
<td>ggF (theory), low-mass two-jet cat.</td>
<td>±30</td>
</tr>
<tr>
<td>Impact of background modelling</td>
<td>±(2 - 14), cat.-dependent</td>
</tr>
</tbody>
</table>

Production cross sections

<table>
<thead>
<tr>
<th>Source</th>
<th>Scale</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluon fusion</td>
<td>+7.6% -8.2%</td>
<td>+7.6% -7.0%</td>
</tr>
<tr>
<td>Vector boson fusion</td>
<td>+0.3% -0.8%</td>
<td>+2.6% -2.8%</td>
</tr>
<tr>
<td>Associated production with W/Z</td>
<td>+2.1% -1.8%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Associated production with t\bar{t}</td>
<td>+4.1% -9.4%</td>
<td>8.0%</td>
</tr>
</tbody>
</table>
H → WW → 2l2ν in a nutshell

- **Signatures:** 2 isolated high p_T leptons + MET, no hard jet in the central region, no mass peak (mass resolution ≈ 20%)

- **Backgrounds:** tt, DY, WW, tW, W+jets

- **Preselection:**
 - single lepton triggers + muon/ele ID
 - isolated leptons opp. charge, p_T

- **Main selection observables:**
 - Central jet veto
 - Angular correlations btw leptons related to the **scalarity** $\Delta\phi$
 - Discriminating variables:
 - Di-lepton mass, transverse mass, leptons $p_T, \Delta\phi$
 - cut based and MVA approaches
 - Main challenge = control from data of:
 - MET measurement and fake rate
 - modeling of tt and WW bkg
Higgs signal strength summary

\[\mu_{\gamma\gamma} = 1.57^{+0.33}_{-0.28} \]
\[\mu_{ZZ} = 1.44^{+0.40}_{-0.35} \]
\[\mu_{WW} = 1.00^{+0.32}_{-0.29} \]
\[\mu_{\tau\tau} = 1.4^{+0.5}_{-0.4} \]
\[\mu_{bb} = 0.2^{+0.7}_{-0.6} \]

Combined fit
\[\mu_{\gamma\gamma} = 1.30^{+0.16}_{-0.17} \]
\[\mu_{ZZ} = 0.77^{+0.27}_{-0.27} \]
\[\mu_{WW} = 0.92^{+0.28}_{-0.28} \]
\[\mu_{\tau\tau} = 0.68^{+0.2}_{-0.2} \]
\[\mu_{bb} = 1.10^{+0.41}_{-0.41} \]

Combined fit
\[\mu_{\gamma\gamma} = 0.80^{+0.14}_{-0.14} \]

ATLAS
\[[m_H=125.5 \text{ GeV}] \]

CMS
\[[m_H=125.7 \text{ GeV}] \]
Constraint on the Γ_H from off-shell $H \rightarrow ZZ$

Event yield

<table>
<thead>
<tr>
<th></th>
<th>Full region</th>
<th>Signal-enriched region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gg + VBF \rightarrow 4\ell$ (signal, $\Gamma_H/\Gamma_H^{SM} = 1$)</td>
<td>$2.22^{+0.15}_{-0.17}$</td>
<td>$1.20^{+0.08}_{-0.09}$</td>
</tr>
<tr>
<td>$gg + VBF \rightarrow 4\ell$ (background)</td>
<td>$31.1^{+3.0}_{-3.1}$</td>
<td>2.12 ± 0.21</td>
</tr>
<tr>
<td>$gg + VBF \rightarrow 4\ell$ (total, $\Gamma_H/\Gamma_H^{SM} = 1$)</td>
<td>$29.6^{+2.8}_{-2.9}$</td>
<td>$1.73^{+0.16}_{-0.17}$</td>
</tr>
<tr>
<td>$gg + VBF \rightarrow 4\ell$ (total, $\Gamma_H/\Gamma_H^{SM} = 15$)</td>
<td>$51.8^{+4.9}_{-5.0}$</td>
<td>13.1 ± 1.1</td>
</tr>
<tr>
<td>$q\bar{q}$</td>
<td>154.7 ± 7.4</td>
<td>8.6 ± 0.4</td>
</tr>
<tr>
<td>Reducible background</td>
<td>3.7 ± 0.6</td>
<td>0.44 ± 0.08</td>
</tr>
<tr>
<td>Total expected ($\Gamma_H/\Gamma_H^{SM} = 1$)</td>
<td>188.0 ± 7.9</td>
<td>10.8 ± 0.4</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ee</th>
<th>$\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$gg + VBF$ (signal, $\Gamma_H/\Gamma_H^{SM} = 1$)</td>
<td>2.30 ± 0.03</td>
<td>2.72 ± 0.03</td>
</tr>
<tr>
<td>$gg + VBF$ (background)</td>
<td>5.4 ± 0.2</td>
<td>6.5 ± 0.2</td>
</tr>
<tr>
<td>$gg + VBF$ (total, $\Gamma_H/\Gamma_H^{SM} = 1$)</td>
<td>4.8 ± 0.1</td>
<td>5.7 ± 0.3</td>
</tr>
<tr>
<td>$gg + VBF$ (total, $\Gamma_H/\Gamma_H^{SM} = 10$)</td>
<td>19.2 ± 0.6</td>
<td>22.6 ± 1.2</td>
</tr>
<tr>
<td>$q\bar{q} \rightarrow ZZ$</td>
<td>25.0 ± 0.5</td>
<td>29.4 ± 0.5</td>
</tr>
<tr>
<td>WZ</td>
<td>11.6 ± 0.4</td>
<td>13.5 ± 0.4</td>
</tr>
<tr>
<td>$t\bar{t}/tW/WW$</td>
<td>3.3 ± 1.1</td>
<td>4.2 ± 1.4</td>
</tr>
<tr>
<td>$Z +$ jets</td>
<td>1.5 ± 0.9</td>
<td>2.4 ± 1.4</td>
</tr>
<tr>
<td>Total expected ($\Gamma_H/\Gamma_H^{SM} = 1$)</td>
<td>46.2 ± 1.6</td>
<td>55.3 ± 2.1</td>
</tr>
<tr>
<td>Observed</td>
<td>39</td>
<td>52</td>
</tr>
</tbody>
</table>
Constraint on the Γ_H from $H^*(126) \rightarrow ZZ$

At 95% CL:

- Expected $r < 11.5$
- Observed $r < 6.6$

Main systematic uncertainties:
- QCD scale and PDFs for $q\bar{q} \rightarrow ZZ$ and $gg \rightarrow ZZ$
- μ uncertainties from CMS 4l low-mass paper
- Uncertainty on k-factor approximation for $gg \rightarrow ZZ$ continuum
- Experimental uncertainties (lepton trigger/reconstruction efficiencies etc.)
Spin-parity: strategy

A large number of options to probe the spin directly from angular distributions:

- From the decay angles and the spin correlation when applicable
- From the production angle $\cos \theta^*$ distribution
- From the associated production modes (VH, VBF or ggF+jets)

The philosophy of the approach:

- Measure compatibility with the 0^+ hypothesis
- Try to exclude alternative hypotheses simulated using an
 - anomalous couplings compatible with Lorentz and gauge invariance most general (JHUGEN via the matrix element approach)
 - effective Lagrangian including higher order couplings compatible with Lorentz and gauge invariance (MADGRAPH)
Spin-parity: anomalous coupling approach

Spin 0:

\[A(X_{J=0} \rightarrow VV) = v^{-1} \left(g_1 m_v^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu \nu}^{* (1)} f^{* (2)}_{\mu \nu} + g_3 f^{* (1)}_{\mu \alpha} f^{* (2)}_{\mu \alpha} \frac{q_\nu q_\alpha}{\Lambda^2} + g_4 f_{\mu \nu}^{* (1)} f_{\mu \nu}^{* (2)} \right) \]

Spin 1:

\[A(X_{J=1} \rightarrow VV) = g_1^{(1)} \left[(\epsilon_1^* q)(\epsilon_2^* \epsilon_X) + (\epsilon_2^* q)(\epsilon_1^* \epsilon_X) \right] + g_2^{(1)} \epsilon_{\alpha \mu \nu \beta} \epsilon_X^* \epsilon_1^* \epsilon_2^* \epsilon_X^* q^\beta \]

Spin 2:

\[A(X_{J=2} \rightarrow VV) = \Lambda^{-1} \left[2g_2^{(2)} t_{\mu \nu} f^{* 1, \mu \alpha} f^{* 2, \nu \alpha} + 2g_2^{(2)} t_{\mu \nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{* 1, \mu \alpha} f^{* 2, \nu \beta} \right. \\
+ g_3^{(2)} \frac{q^\beta q^\alpha}{\Lambda^2} t_{\beta \nu} (f^{* 1, \mu \nu} f^{* 2, \mu \nu} f^{* 1, \mu \alpha} f^{* 2, \mu \alpha}) + g_4^{(2)} \frac{q^\nu q^\mu}{\Lambda^2} t_{\mu \nu} f^{* 1, \alpha \beta} f^{* 2, \alpha \beta} \\
+ m_V^2 \left(2g_5^{(2)} t_{\mu \nu} \epsilon_1^* \epsilon_2^* \epsilon_X^* + 2g_6^{(2)} \frac{q^\mu q_\alpha}{\Lambda^2} t_{\mu \nu} (\epsilon_1^* \epsilon_2^* \epsilon_X^* - \epsilon_1^* \epsilon_1^* \epsilon_X^*) + g_7^{(2)} \frac{q^\nu q^\mu}{\Lambda^2} t_{\mu \nu} \epsilon_1^* \epsilon_2^* \epsilon_X^* \right) \\
+ g_8^{(2)} \frac{q_\mu q_\nu}{\Lambda^2} t_{\mu \nu} f^{* 1, \alpha \beta} f^{* 2, \alpha \beta} + g_9^{(2)} t_{\mu \nu} \epsilon_{\mu \rho \sigma} \epsilon_{\alpha \beta} \epsilon_{\nu}^* \epsilon_{\sigma}^* q^\rho q^\sigma \\
+ \left. g_{10}^{(2)} t_{\mu \nu} \epsilon_{\mu \rho \sigma} q^\rho q^\sigma (\epsilon_1^* \epsilon_2^* (q \epsilon_X^*) + \epsilon_2^* \epsilon_1^* (q \epsilon_X^*)) \right] , \]
Spin-parity: $0^+ \text{ vs } 2^+_m$ from $H \rightarrow \gamma\gamma$

- Distribution of production angle $\cos\theta^*$ sensitive to J^{CP} (spin 1 is forbidden by the Landau-Yang theorem)
- Event selection similar to $H \rightarrow \gamma\gamma$ mass analysis
 - **ATLAS**: no correlation between $m_{\gamma\gamma}$ and $\cos\theta^*$ for the baseline analysis
 - **CMS**: simple 4 categories cut-based categorization based on η and R9

CMS not able to exclude 2^+ models at 95%CL while a better sensitivity for ATLAS analysis partially driven by higher observed excess. SM hypothesis generally favored in data
CP-odd fraction fit

Test of possible CP violating components of the amplitude so a possible mixture of CP-even and CP-odd components

The spin-zero models $0^+, 0^+_h$, and 0^- correspond to the terms with a_1, a_2, and a_3, respectively, appearing in the decay amplitude for a spin-zero boson

$$A(H \rightarrow ZZ) = v^{-1}(a_1 m_Z^2 e_1^* e_2^* + a_2 f^{*(1)}_{\mu\nu} f^{*(2)}_{\mu\nu} + a_3 f^{*(1)}_{\mu\nu} f^{*(2)}_{\mu\nu}).$$

- SM case $a_1 = 1$ and $a_2 = a_3 = 0$
- a_3 is a CP-odd amplitude
- Measure $f_{a_3} = a_3/a_1$ (assuming $a_2 = 0$)

$$f_{a_3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_3|^2 \sigma_3} \quad \frac{|a_3|}{|a_1|} = \sqrt{\frac{f_{a_3}}{1 - f_{a_3}}} \times \sqrt{\frac{\sigma_1}{\sigma_3}}$$

$$\sigma_1/\sigma_3 = 6.240$$ for a 126 GeV Higgs boson

Best fit $f_{a_3} = 0.00^{+0.17}_{-0.00}$

$f_{a_3} < 0.51$ @ 95% CL
The signals observed in the different search channels originate from a single resonance with mass of 125.5 GeV.

The width of the Higgs boson is narrow → the zero-width approximation

\[\sigma \cdot B (i \rightarrow H \rightarrow f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H} \]

Only modifications of coupling strengths are considered while the tensor structure of the lagr. is the SM one → observed 0^+

The coupling scale factors \(K_i \) are defined in such a way that

- the cross sections \(\sigma_{ii} \)
- the partial decay widths \(\Gamma_{ii} \) associated with the SM particle \(i \) scale with \(K^2_i \) compared to the SM prediction

significant deviations of any \(K_i \) from unity would imply new physics BSM

results are extracted from fits to the data using the profile likelihood ratio where the \(\kappa_i \) couplings are treated either as parameters of interest or as nuisance parameters, depending on the measurement
Test of custodial symmetry

\[\lambda_{WZ} = \kappa_W / \kappa_Z \]

this value is expected to be protected and consistent with unity. Large deviations from 1 indicate new physics.

To fit the \(\lambda_{WZ} \) from data **CMS** uses:
- untagged pp \(\rightarrow H \rightarrow WW \)
- inclusive pp \(\rightarrow H \rightarrow ZZ \)

since the production mechanism is dominated by ggF and the result is more model independent.

The scale factor \(k_Z \) is treated as a nuisance parameter, and \(k_f \approx 1 \) for all Higgs boson couplings to fermions.

<table>
<thead>
<tr>
<th>Method</th>
<th>95% C.I. (\lambda_{WZ})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>H (\rightarrow VV(0,1) jet) (k_Z) profiled, (k_f \approx 1)</td>
</tr>
<tr>
<td></td>
<td>[0.60, 1.4]</td>
</tr>
<tr>
<td>CMS</td>
<td>Overall (k_Z, k_f) profiled</td>
</tr>
<tr>
<td></td>
<td>[0.62, 1.19]</td>
</tr>
<tr>
<td>ATLAS</td>
<td>Overall (\lambda_{fZ}, k_{ZZ}) profiled</td>
</tr>
<tr>
<td></td>
<td>(0.81^{+0.16}_{-0.15})</td>
</tr>
</tbody>
</table>

Data show consistency of \(\lambda_{WZ} = \kappa_W / \kappa_Z \) with the unity

N. De Filippis
Moriond QCD, La Thuile, Italy, March 22-29, 2014
Test of couplings to the VV and ff

Assumptions :

- \(\lambda_{WZ} = k_W/k_Z = 1 \) so \(k_W = k_Z = k_V \) common factor
- \(\Gamma_{BSM} = 0 \) i.e. no new Higgs boson decay modes are open

At leading order (LO)

- all partial widths scale either as \(k_V^2 \) or \(k_f^2 \) except \(\Gamma_{\gamma\gamma} \)
- \(\Gamma_{\gamma\gamma} \) is induced via W and top loop diagrams and scales as \(|\alpha k_V + \beta k_f|^2 \)
- so \(\gamma\gamma \) is the only channel sensible to the sign of \(k_V \) or \(k_f \)

The data are compatible with the expectation for the SM: the point \((k_V, k_f) = (1,1)\) is within the 68% confidence region defined by the data.
Test of presence of BSM

Processes induced by loop diagrams ($H \rightarrow \gamma \gamma$ and $gg \rightarrow H$) can be particularly susceptible to the presence of new particles.

So fit the data for the scale factors k_g and k_γ for these two processes.
Fermion universality

- 2-Higgs-Doublet models can affect
 - up-type, down-type fermions differently
 - leptons, quarks differently

k_v and k_q (k_u) profiled

\[[0.00, 2.11] \text{ @ } 95\% \text{ CL} \]

\[[0.45, 1.66] \text{ @ } 95\% \text{ CL} \]
Test of presence of BSM

Letting BR_{BSM} floating for the best fit with k_g and k_γ profiled together with all other nuisance parameters

Scale total width: $\text{BR}_{\text{BSM}} = \frac{\Gamma_{\text{BSM}}}{\Gamma_{\text{tot}}}$

$[-2\Delta \ln L, 5.0]$ for the best fit with k_g and k_γ profiled together with all other nuisance parameters

$[0.00, 0.52] @ 95\% \text{ CL}$
From BEH to dark matter

Can interpret limit on invisible BR as limit on DM candidates coupling to BEH boson.

\[
\sigma_{S-N} = \frac{4 \Gamma_{\text{inv.}}}{m_H^3 v^2 \beta (M_X + m_N)^2} \cdot \frac{m_N^4 f_N^2}{m^4 f_N^2}
\]
Higgs couplings summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Probed couplings</th>
<th>Parameters of interest</th>
<th>Functional assumptions</th>
<th>Example: $gg \to H \to \gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Couplings to fermions and bosons</td>
<td>κ_V, κ_F</td>
<td>\checkmark \checkmark \checkmark \checkmark \checkmark</td>
<td>$\kappa_F^2 \cdot \kappa_F^2 (\kappa_F, \kappa_V) / \kappa_H^2 (\kappa_F, \kappa_V)$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>κ_{LV}, κ_{VV}</td>
<td>\checkmark \checkmark \checkmark \checkmark \checkmark</td>
<td>$\kappa_{LV}^2 \cdot \kappa_{LV}^2 (\kappa_{LV}, \kappa_{VV}, 1)$</td>
</tr>
<tr>
<td>3</td>
<td>Custodial symmetry</td>
<td>$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$</td>
<td>$-$ \checkmark \checkmark \checkmark $-$</td>
<td>$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \lambda_{FZ}^2 (\lambda_{WZ}, \lambda_{FZ}, \lambda_{WZ})$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$\lambda_{WZ}, \lambda_{FZ}, \lambda_{YZ}, \kappa_{ZZ}$</td>
<td>$-$ \checkmark \checkmark \checkmark $-$</td>
<td>$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \lambda_{FZ}^2$</td>
</tr>
<tr>
<td>5</td>
<td>Vertex loops</td>
<td>κ_g, κ_y</td>
<td>1 1 \checkmark \checkmark</td>
<td>$\kappa_g^2 \cdot \kappa_y^2 / \kappa_H^2 (\kappa_g, \kappa_y)$</td>
</tr>
</tbody>
</table>

CMS

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>Assessed scaling factors (68% and 95% CL intervals)</th>
<th>Total uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{WZ}, κ_Z</td>
<td>λ_{WZ}</td>
<td>$[0.75,1.13] [0.60,1.40]$</td>
</tr>
<tr>
<td>$\lambda_{WZ}, \kappa_Z, \kappa_f$</td>
<td>λ_{WZ}</td>
<td>$[0.73,1.00] [0.62,1.19]$</td>
</tr>
<tr>
<td>κ_V, κ_f</td>
<td>κ_V</td>
<td>$[0.81,0.97] [0.73,1.05]$</td>
</tr>
<tr>
<td></td>
<td>κ_f</td>
<td>$[0.71,1.11] [0.55,1.31]$</td>
</tr>
<tr>
<td>κ_y, κ_g</td>
<td>κ_g</td>
<td>$[0.79,1.14] [0.59,1.30]$</td>
</tr>
<tr>
<td></td>
<td>κ_y</td>
<td>$[0.73,0.94] [0.63,1.05]$</td>
</tr>
<tr>
<td>$B(H \to BSM), \kappa_y, \kappa_g$</td>
<td>$B(H \to BSM)$</td>
<td>$[0.00,0.24] [0.00,0.52]$</td>
</tr>
<tr>
<td>$\lambda_{d_\mu}, \kappa_V, \kappa_u$</td>
<td>λ_{d_μ}</td>
<td>$[1.00,1.60] [0.74,1.95]$</td>
</tr>
<tr>
<td>$\lambda_{t_q}, \kappa_V, \kappa_q$</td>
<td>λ_{t_q}</td>
<td>$[0.89,1.62] [0.57,2.05]$</td>
</tr>
<tr>
<td>$\kappa_V, \kappa_b, \kappa_t, \kappa_t, \kappa_g, \kappa_y$</td>
<td>κ_V</td>
<td>$[0.84,1.23] [0.60,1.39]$</td>
</tr>
<tr>
<td></td>
<td>κ_b</td>
<td>$[0.61,1.69] [0.00,2.63]$</td>
</tr>
<tr>
<td></td>
<td>κ_t</td>
<td>$[0.82,1.45] [0.53,1.81]$</td>
</tr>
<tr>
<td></td>
<td>κ_t</td>
<td>$[0.00,2.03] [0.00,4.20]$</td>
</tr>
<tr>
<td></td>
<td>κ_g</td>
<td>$[0.65,1.15] [0.49,1.77]$</td>
</tr>
<tr>
<td></td>
<td>κ_y</td>
<td>$[0.77,1.27] [0.55,1.55]$</td>
</tr>
</tbody>
</table>

as above + $B(H \to BSM)$, but $\kappa_V \leq 1$ | $B(H \to BSM)$ | $[0.00,0.80] [0.00,0.64]$ |
Higgs couplings summary

![Graph showing Higgs couplings](image)

- $\lambda_{WZ} = 0.94^{+0.14}_{-0.29}$, ATLAS
- $\lambda_{WZ} = 0.73-1.0$, CMS
- $\kappa_F = 0.99^{+0.17}_{-0.15}$, ATLAS
- $\kappa_F = 0.71-1.11$, CMS
- $\kappa_V = 1.15^{+0.08}_{-0.08}$, ATLAS
- $\kappa_V = 0.81-0.97$, CMS
- $\lambda_{FV} = 0.86^{+0.14}_{-0.12}$, ATLAS
- $\kappa_g = 1.08^{+0.15}_{-0.13}$, ATLAS
- $\kappa_g = 0.73-0.94$, CMS
- $\kappa_\gamma = 1.19^{+0.15}_{-0.12}$, ATLAS
- $\kappa_\gamma = 0.79-1.14$, CMS
- $\lambda_{d_R} = 0.78-1.15$, ATLAS
- $\lambda_{d_R} = 1.0-1.6$, CMS
- $|\lambda_{lq}| = 0.99-1.5$, ATLAS
- $|\lambda_{lq}| = 0.89-1.62$, CMS
- $B_{l_R} < 0.55$, ATLAS
- $B_{l_R} < 0.64$, CMS