Nuclear Target Cross Section Ratios at MINERvA

Brian G. Tice - Argonne National Laboratory
With travel support from Rutgers, The State University of New Jersey

Rencontres de Moriond – QCD and High Energy Interactions
La Thuile, Aosta Valley, Italy
March 22-29, 2014
How do we love MINERvA?
Let me count the ways*…

Neutrino Physics

“I want to measure neutrino oscillations”
MINERvA will…
- help me understand neutrino energy reconstruction
- reduce my uncertainties from cross sections and nuclear effects

Nuclear Physics

“I want to measure nucleon structure”
MINERvA will…
- use a probe sensitive to flavor and axial structure

*this is an incomplete list of the ways we love MINERvA
Priority: $\sigma(E_\nu)$

Neutrino-Nucleus Interactions

- Heavy nuclear targets used to get necessary statistics
 - Carbon, Iron, Lead, Water, Argon
- Nuclear effects are significant in neutrino scattering
 - Affects energy smearing and event rate
- Neutrino interaction simulation (models) rarely handle nuclear modifications well
 - They need data!

Must understand nuclear effects in neutrino scattering!
Charged lepton data show structure function F_2 effectively changes when nucleon bound in nucleus

Abstract:
“Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions $F_2(Fe)/F_2(D)$ is presented. The observed x-dependence of this ratio is in disagreement with existing theoretical predictions.”

The EMC effect still puzzles after 30 years

Thirty years ago, high-energy muons at CERN revealed the first hints of an effect that puzzles experimentalists and theorists alike to this day.

$$x = \frac{Q^2}{2M\nu}$$
Priority: $d\sigma/dx$

No comparable neutrino data!

Plot of ratio (R) of NUTEV (ν-Fe) data to theoretical predictions of free nucleon F_2. Compared to fits to ratio from charged lepton.

Expectations for neutrino nuclear structure function modification:

- Neutrinos sensitive to structure function F_3
 - (Charged leptons are not)
 - Gives neutrinos ability to separate valence and sea

- Neutrinos sensitive to axial contribution of structure function F_2
 - (Charged leptons are not)
 - Axial effect larger at low x, low Q^2
Inclusive Charged-Current Neutrino Cross Sections

- **Quasi-Elastic (CCQE)**
 - knock out nucleon-

- **Resonance Production (Res)**
 - excite nucleon-

- **Deep Inelastic Scattering (DIS)**
 - destroy nucleon-

Graphical Representation:

- $\nu_l \rightarrow l^-$
- W^+
- $n \rightarrow p$
- $\nu_l \rightarrow l^-$
- W^+
- $p \rightarrow p \Delta^{++}$
- $d \rightarrow W^+ u$
- π^+, K, π^0

References:

Comments:

- Deep Inelastic Scattering (DIS) can lead to the production of resonance states.
- Quasi-Elastic (CCQE) scattering involves the exchange of a W boson, leading to the production of a resonance state.

Quasi-Elastic (CCQE) Cross Section Graph:

- ν_μ
- ν_e
- E_ν (GeV)
- $\sigma / E_\nu (10^{-38} \text{ cm}^2 / \text{GeV})$

Moriond QCD - MINERvA Nuclear Ratios - Brian Tice

March 26, 2014
MINERvA Detector (again)

- 120 modules for tracking and calorimetry (~32k readout channels)
 - Active element is polystyrene (plastic scintillator)
- Construction completed Spring 2010. He and Water added in 2011
- Magnetized MINOS Near Detector serves as toroidal muon spectrometer
MINERvA Detector (again)

- 120 modules for tracking and calorimetry (~32k readout channels)
 - Active element is polystyrene (plastic scintillator)
- Construction completed Spring 2010. He and Water added in 2011
- Magnetized MINOS Near Detector serves as toroidal muon spectrometer
250 kg Liquid He

Active Scintillator Modules

1” Fe / 1” Pb
323kg / 264kg

1” Pb / 1” Fe
266kg / 323kg

3” C / 1” Fe / 1” Pb
166kg / 169kg / 121kg

0.3” Pb
228kg

500kg Water

.5” Fe / .5” Pb
161kg / 135kg

Tracking Region

Moriond QCD - MINERvA Nuclear Ratios - Brian Tice
Targets used for today’s result

Active Scintillator Modules

<table>
<thead>
<tr>
<th>A</th>
<th>Mass (t)</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.16</td>
<td>6k</td>
</tr>
<tr>
<td>Fe</td>
<td>0.63</td>
<td>19k</td>
</tr>
<tr>
<td>Pb</td>
<td>0.71</td>
<td>24k</td>
</tr>
<tr>
<td>CH</td>
<td>5.48</td>
<td>189k</td>
</tr>
</tbody>
</table>

Target 2
- 1" Pb / 1" Fe
- 266kg / 323kg

Target 3
- 3" C / 1" Fe / 1" Pb
- 166kg / 169kg / 121kg

Target 4
- 0.3" Pb
- 228kg

Target 5
- .5” Fe / .5” Pb
- 161kg / 135kg
Event Topology
Muon must be matched to a momentum- and charge-analyzed track in MINOS ND

Interaction Material
Vertex must be in passive nuclear target or adjacent scintillator plane
Event Topology
Muon must be matched to a momentum- and charge-analyzed track in MINOS ND

Interaction Material
Scintillator events must be in the fiducial volume of the tracker
Event Reconstruction

Hadronic Energy
Sum of non-muon visible energy. Weight for passive material traversed.

\[\nu = E_{recoil} = \alpha \times \sum_{i} \frac{E_i}{f_i} \]

Muon Energy
From range or curvature in MINOS. Add energy lost in MINERvA.

Muon Angle
Fitted track slopes at vertex.

Unfold neutrino energy distributions
Use simulation of detector smearing

Do not unfold x distributions
Large migration among x bins
Avoid systematic effects

\[E_{\nu} = \nu + E_{\mu} \]

\[x = \frac{Q^2}{2M_{\nu}} \]

\[Q^2 = 2E_{\nu} (E_{\mu} - p_{\mu} \cos (\theta_{\mu})) \]
Major Background - Misidentified Nucleus

Background from other sources < 1%

Simulation

Signal

Significant impurity of scintillator events. Expect ~23% from fiducial mass of iron vs. scintillator

Few carbon/lead events migrating into iron sample
An event from Target 3

Lead candidate

This Event
- Run: 2014
- Subrun: 5
- Gate: 609
- Slice: 8

March 26, 2014

Moriond QCD - MINERvA Nuclear Ratios - Brian Tice
An event from Target 3
Carbon candidate

This Event
Run: 2005
Subrun: 5
Gate: 111
Slice: 3

March 26, 2014
Moriond QCD - MINERvA Nuclear Ratios - Brian Tice
One track events from passive target have a vertex in the first plane downstream of the target.

Tracking region used to estimate and subtract contamination from scintillator events.
Event distributions in Fe of Target 5

A separate estimated background for data and Simulation

Simulation scaled to data by total number of events passing selection. Shading on simulation is systematic uncertainty.
Kinematic Space

Event sample is a blend of interaction channels

\[W = \sqrt{M^2 + 2M\nu - Q^2} \]
Errors on Absolute Cross Section

Flux is dominant systematic

$\frac{d\sigma_{Fe}}{dx}$
Errors on Absolute Cross Section

\[\frac{d\sigma}{dx} = \frac{\sum_j U_{ij} (d_j - b_j)}{\epsilon_i (\Phi T) \Delta x_i} \]

Flux is the same throughout detector

\[d\sigma^{Fe}/dx \]

Take ratio of cross sections to ~cancel flux
Errors on **Absolute Cross Section**

- $d\sigma^{Fe}/dx$

Errors on **Ratio of Cross Sections**

- $\frac{d\sigma^{Fe}/dx}{d\sigma^{CH}/dx}$
Results

Charged-Current Inclusive Ratios of Cross Sections

Signal Kinematics
2 < Neutrino Energy < 20 GeV
0 < Muon Angle < 17 deg

Neutrino Energy

$\frac{\sigma^C}{\sigma^{CH}}$, $\frac{\sigma^{Fe}}{\sigma^{CH}}$, $\frac{\sigma^{Pb}}{\sigma^{CH}}$

Bjorken x

$\frac{d\sigma^C}{d\sigma^{CH}}$, $\frac{d\sigma^{Fe}}{d\sigma^{CH}}$, $\frac{d\sigma^{Pb}}{d\sigma^{CH}}$
Neutrino Energy

- No evidence of tension between our data and simulation here
 - Good news for oscillation experiments so far...
High x

- At $x=[0.7,1.5]$, we observe an excess that grows with the size of the nucleus.
- This effect is not predicted by simulation.
Low x

- At $x=[0^*, 0.1]$, we observe a **deficit** that increases with the size of the nucleus
- This effect is not predicted by simulation

Expected Neutrino Differences

- Neutrinos sensitive to structure function xF_3
- Neutrinos sensitive to axial piece of structure function F_2

* Simulation suggests events down to 0.005
 No events really at 0
Simulations of Nuclear Modification

Our Simulation | GENIE 2.6.2

- Fit to charged lepton DIS data
- All nuclei have same modification
 - All treated as isoscalar iron

A. Bodek, I. Park, and U.-K. Yang,

Compare to Other Models

- Kulagin-Petti (KP)
 - Microphysical model
 - Starts with neutrino-nucleon F1, F2, F3
 - Incorporates A-dependent effects

- Bodek-Yang 2013 (BY)
 - Similar to GENIE
 - Specific fits for C, Fe, Pb

Differ by only < 1%

Conclusions

- First results from nuclear targets in MINERvA
- First precise direct measurement of nuclear dependence of neutrino cross sections in the few-GeV regime
- Result submitted to PRL. Now at arXiv:1403.2103

Measurement of Ratios of ν_μ Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2–20 GeV

- Our data are not reproduced by simulation
 - Available models differences are small compared to discrepancy
- Oscillation experiments should consider discrepancies in systematics
- More theoretical work is needed to improve models of neutrino-nucleus scattering in all kinematic regions
Backup
Background - Rock Muons

Affected only Target 2 in the earliest data

Uninstrumented planes reduced tracking efficiency. Veto wall was not installed yet.

Target 2 ≈ 50% of iron, 33% of lead. Early data ≈ 30% of all neutrino data.

→ < 1% flat correction
Background - Neutral Current and $\bar{\nu}_\mu$ Events

Small backgrounds (<0.5%)
Subtract using simulation prediction for fractional background

Wrong sign contamination is smaller in the beam’s focusing beam
Kinematic Space

Shows all analyzed events from all nuclei

- DATA
- Soft DIS
- Inelastic Continuum
- DIS
- Resonances
- Quasi-elastic

Reconstructed \(Q^2 \) (GeV/c)^2 vs. Reconstructed Bjorken \(x \)

- \(W = 2 \) GeV
- \(W = 1.3 \) GeV
Forming a Cross Section

\[
\left(\frac{d\sigma}{dx} \right)_i = \frac{\sum_j U_{ij} (d_j - b_j)}{\epsilon_i (\Phi T) \Delta x_i}
\]

- **data – background = signal**
- **Unfolding matrix**
 - From reco bin j to “true” bin i
- **Efficiency for bin i**
- **Flux times target number**
 - Flux may depend on bin
- **Bin width**
Bin Migration

\[
\left(\frac{d\sigma}{dx} \right)_i = \sum_j U_{ij} (d_j - b_j) \epsilon_i (\Phi T) \Delta x_i
\]

- Unfold in neutrino energy
 - Iterative Bayesian unfolding with 4 iterations

- Fold true x distributions
 - Multiply by this matrix \(\rightarrow \)
 - Avoids model dependence
 - Migration in x is significant
Reconstruction Efficiency

Signal Kinematics
2 < Neutrino Energy < 20 GeV
0 < Muon Angle < 17 deg

MINOS-match requirement
Muon momentum threshold ~ 2 GeV

(plots made with Target 5 lead events)

\[
\left(\frac{d\sigma}{dx} \right)_i = \frac{\sum_j U_{ij}(d_j - b_j)}{\epsilon_i(\Phi T)\Delta x_i}
\]
Subtract the Plastic Background

- Predict spectrum of background using:
 - Events in the Tracker
 - Geometric Acceptance
 - Reconstruction Efficiency

Found this event in scintillator of tracker

Pretend the same event happened in plastic background
Predict spectrum of background using:

Events in the Tracker

Selection of events in tracker volume done in both data.
Does not use cross section model.

Data-driven background
Predict spectrum of background using:

- Geometric Acceptance

Muon-only Geant4 simulation measures probability muon will hit MINOS

- Function of muon energy, muon angle, vertex
- Does not use neutrino interaction model
Predict spectrum of background using:

Geometric Acceptance

- Muon-only Geant4 simulation measures probability muon will hit MINOS
 - Function of muon energy, muon angle, vertex

- Apply reweight factor to each event in tracker
 - “For every 1 event like this in the tracker, there will be X in the background”

\[
RW = \frac{f_{\text{target}}(E_\mu, \theta_\mu)}{f_{\text{tracker}}(E_\mu, \theta_\mu)}
\]
Predict spectrum of background using:

- Efficiency also depends on hadronic energy
 - Shower can obscure muon. Not addressed by geometric acceptance.
- Measure remaining efficiency with simulation
 - GENIE 2.6.2 and Geant4
Accuracy of Background Estimation

Events in the Tracker
Geometric Acceptance
Reconstruction Efficiency

Plastic BG Prediction for Iron of Target 5 (MC)

Stat. Errors Only

$\chi^2/\text{ndf} = 18.69/8 = 2.34$

Plastic BG Prediction for Iron of Target 5 (MC)

Stat. Errors Only

$\chi^2/\text{ndf} = 6.04/5 = 1.21$
Errors on Absolute Cross Section

\[\sigma_{Fe} \]

Errors on Ratio of Cross Sections

\[\frac{\sigma_{Fe}}{\sigma_{CH}} \]
Form Ratios

- Combine targets
 - E.g. Add events from all lead pieces after efficiency correction
- Divide C, Fe, Pb cross sections by scintillator cross section
 - Each nucleus divided by a statistically independent scintillator measurements
 - Scintillator measurement is specific for each nucleus, to use the same transverse area