Third Generation SUSY Searches at the LHC

Takashi Yamanaka
(The University of Tokyo,ICEPP)
on behalf of ATLAS and CMS Collaborations
Third Generation Squarks

- Supersymmetry (SUSY) is one of the theory beyond the SM.
- Third generation squarks are expected to be lighter than other squarks due to mixing of the mass matrix and large Yukawa couplings.
- Moreover, naturalness of Higgs mass requires top squarks (stops) to be light.

- Both ATLAS and CMS showed results for third generation squark searches at $\sqrt{s}=7$ TeV of ~5 fb$^{-1}$ in 2011 and at $\sqrt{s}=8$ TeV of ~20 fb$^{-1}$ in 2012.
- Since then, we have performed more studies on this data for new signatures and with improved methods for better sensitivity.
Production and Decay Processes

• Gluino mediated production
 – Relatively higher cross sections and high multiplicity signatures.
 – The gluino can decay through virtual or real stop/sbottom (depending on the mass hierarchy).

\[\tilde{g} \rightarrow tt^{(*)} \rightarrow t\tilde{\chi}_1^0 \]
\[\tilde{g} \rightarrow b\tilde{b}^{(*)} \rightarrow b\tilde{\chi}_1^0 \]

• Direct pair production
 - Cross sections are lower but still larger than EWK production because of strong couplings.
 - The stop/sbottom can decay in different ways depending on the sparticle masses.

\[\tilde{b} \rightarrow b\tilde{\chi}_1^0 / \tilde{t} \rightarrow t\tilde{\chi}_1^0 \]
\[\tilde{t} \rightarrow b\tilde{\chi}_1^\pm / \tilde{b} \rightarrow t\tilde{\chi}_1^0 \]
Gluino Mediated Stop/Sbottom Production
Multi-b-jets Search

• High b-jet multiplicity final states are searched for in both ATLAS and CMS for gluino mediated stop/sbottom production.

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(leptons)</td>
<td>0</td>
<td>>1</td>
</tr>
<tr>
<td>N(b-jets)</td>
<td>>3</td>
<td>>3</td>
</tr>
<tr>
<td>N(jets)</td>
<td>>4, >7</td>
<td>>6</td>
</tr>
</tbody>
</table>

Selection

\[m_{\text{eff}} = E_T^{\text{miss}} + \sum p_T^{\text{jet}} + (p_T^{\text{lepton}}) \]

\[S_T^{\text{lep}} = E_T^{\text{miss}} + p_T^{\text{lepton}} \]

arXiv:1311.4937
Exclusion Limits on Gluino Mediated Production

Various searches interpret their results in gluino mediated stop/sbottom production models. More will be shown in the next talk about “Inclusive SUSY Searches at the LHC” by Sezen Sekmen.

\[m(\tilde{g}) \leq 1.3 \text{ TeV} \] is excluded.
Direct Sbottom Pair Production
For direct sbottom search, both ATLAS and CMS use m_{CT} to reduce the large $ttbar$ background.

JHEP 10 (2013) 189

Leading jet
- $p_T > 150$ GeV, b-tag
- $p_T > 250$ GeV (b-tag)

2nd leading jet
- $p_T > 50$ GeV, b-tag
- $p_T > 30$ GeV, b-tag (b-tag)

3rd leading jet
- $p_T < 50$ GeV
- $p_T > 30$ GeV, b-tag
- $p_T < 50$ GeV

E_{miss}
- > 150 GeV
- > 250 GeV
- > 175 GeV

m_{CT}
- $> 150, 200, 250, 300, 350$ GeV
- $[0, 250, 350, 450], > 450$ GeV

NEW!

CMS-PAS-SUS-13-018
Other Sbottom Searches

• 2 same sign lepton analysis can be interpreted in other scenarios such as sbottom pair production.

• The models in which the sbottom decaying to the neutralino2 are also considered.
 – Then the neutralino2 decays to a Higgs or Z.

Interpretation of the high b-jet multiplicity analyses

Interpretation of 3-lepton b-jets analyses
Direct Stop Pair Production
Direct Stop in All Hadronic Decay

- Top mass reconstruction is used in both ATLAS and CMS for stop in all hadronic decay channel.

ATLASS-CONF-2013-024

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(jet)</td>
<td>≥ 6</td>
<td>≥ 5</td>
</tr>
<tr>
<td>N(b-jet)</td>
<td>≥ 2</td>
<td>$\geq 1, \geq 2$</td>
</tr>
<tr>
<td>$E_{T\text{miss}}$</td>
<td>$>200, 300, 350$ GeV</td>
<td>$>200, 350$ GeV</td>
</tr>
<tr>
<td>m_{3j}</td>
<td>[80, 270] GeV (x2)</td>
<td>[80, 270] GeV (x1)</td>
</tr>
<tr>
<td>$m_T(b, E_{T\text{miss}})$</td>
<td>>175 GeV</td>
<td></td>
</tr>
<tr>
<td>m_{T2}</td>
<td>>300 GeV</td>
<td></td>
</tr>
<tr>
<td>$0.5m_{3j}+m_{\text{Rsys}}$</td>
<td></td>
<td>>500 GeV</td>
</tr>
</tbody>
</table>

3 jet mass distribution in top control region

remnant system mass

CMS-PAS-SUS-13-015

CMS Preliminary, $L = 19.4$ fb$^{-1}$, $\sqrt{s} = 8$ TeV

3 jet mass distribution in top control region

remnant system mass

26 March 2014

Moriond QCD and High Energy Interactions
Direct Stop in Semi-leptonic Decay

- ATLAS uses cut-based approach and binned shape fit.
 - For shape fit, 2D distributions of E_T^{miss} vs. $m_T(p_T^{\text{lepton}}, E_T^{\text{miss}})$ are used.
- CMS uses cut-based approach and a BDT multivariate method.
 - E_T^{miss}, m_T, $\min\Delta\phi$, Leading b-jet p_T etc. as input for BDT.

Preselection:
- Exactly 1-lepton
- At least 4 jets
- At least 1 b-jet

ATLAS-CONF-2013-037

26 March 2014
Stop in Semiletonic Decay Exclusion Limits

1-lepton analysis is sensitive to stop polarization. ATLAS and CMS use different assumptions here (ATLAS assumes almost stopR-like stop1 scenario).

Different chargino, neutralino mass relation is used for $\tilde{t}_1 \to b\tilde{\chi}_1^\pm$.
Direct Stop in Di-leptonic Decay

- Leptonic (using 2-lepton) and hadronic (using 2 bjets) m_{T2} analyses and BDT multivariate analysis are performed for di-leptonic decay mode.

$\sum \min_{\alpha_i} \left\{ \max \left[m_T(p_T^1, q_T^1), m_T(p_T^2, q_T^2) \right] \right\}$ is used to reduce ttbar background.

Update!

Multivariate BDT

arXiv:1403.4853
Stop to Stau

- Stop dilepton search is also interpreted in another model in which stop decays to stau and gravitino is LSP.
 - Leptonic m_{T2} analysis interprets this model.
 - For low stop mass signals, one more signal region is added which requires low m_{T2}^{ll}.

\[
m_{T2}(p_T^1, p_T^2, q_T) = \min_{q_T + q_T^1 = q_T} \left\{ \max\left[m_T(p_T^1, q_T^1), m_T(p_T^2, q_T^2) \right] \right\}
\]

\[
p_T^1 = p_T^{lep1} + p_T^{jet1}
\]

\[
p_T^2 = p_T^{lep2} + p_T^{jet2}
\]

with $m^{ll} < 180$ GeV

ATLAS-CONF-2014-014
Summary of Direct Stop Pair Production

- These results are also interpreted in various mass hierarchies for stop, chargino, neutralino.

Razor analysis will be mentioned in the next "Inclusive SUSY Searches at the LHC"
Stop2 Searches

- If \(m(\tilde{t}_2) - m(\tilde{\chi}_1^0) \approx m(t) \), \(\tilde{t}_2 \rightarrow t\tilde{\chi}_1^0 \) signal is very similar to SM top pair production and there is little sensitivity with the existing searches.
- If stop2 is not too heavy, the signature of stop2 can be seen which decays to stop1 via a Z or h.

Etmiss distribution in 3 lepton, on-shell Z channel

NEW!

Update!

arXiv.1403.5222

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(leptons)</td>
<td>2 OS (\geq 3)</td>
<td>2 OS (\geq 3)</td>
</tr>
<tr>
<td>N(jets)</td>
<td>([3,4], \geq 5)</td>
<td>([2,3], \geq 4), (\geq 5)</td>
</tr>
<tr>
<td>N(b-jets)</td>
<td>(\geq 1)</td>
<td>(1, \geq 2)</td>
</tr>
<tr>
<td>(E_t^{\text{miss}}) (>160,200) GeV</td>
<td>(>60) GeV (\geq 50) GeV</td>
<td>([50,120]), (\geq 120) GeV</td>
</tr>
<tr>
<td></td>
<td>on-shell Z</td>
<td>100(\leq M_{bb}) (\leq 150) GeV</td>
</tr>
</tbody>
</table>

Others

26 March 2014

Moriond QCD and High Energy Interactions
Stop2 Exclusion Limits

Interpretation in different BRs
Stop to Higgsino in GMSB

- Naturalness requires the higgsino to also be light.
- If gravitino is LSP, decay of higgsino to gravitino (accompanied by Z or h) gives another signature.

Event selection for $hh \rightarrow \gamma\gamma + bb$ signal:
- Two photons $p_T > 40, 25$ GeV
- 120 GeV $< M_{\gamma\gamma} < 131$ GeV
- At least two b-jets $p_T > 30$ GeV

Three categories:
(i) one additional b-jet
(ii) 95 GeV $< M_{bb} < 155$ GeV
(iii) others

Update!
Summary

- Third generation squarks are expected to be lighter than the other squarks.
- ATLAS and CMS collected \(\sim 20 \text{ fb}^{-1} \) p-p collision data at \(\sqrt{s}=8 \text{ TeV} \) in 2012 and performed searches for third generation squarks.
- Updated results during 2013 are presented in this talk.
 - No excess from SM is found so far.
 - For \(\tilde{b}_1 \rightarrow b + \tilde{\chi}_1^0 \), \(m(\tilde{b}_1) \lesssim 700 \text{ GeV} \) \((m(\tilde{\chi}_1^0) \approx 0 \text{ GeV}) \) is excluded.
 - For \(\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 \), \(m(\tilde{t}_1) \lesssim 700 \text{ GeV} \) \((m(\tilde{\chi}_1^0) \approx 0 \text{ GeV}) \) is excluded.
- LHC run 2 will start soon with \(\sqrt{s}=13-14 \text{ TeV} \! \! \! ! !
 - e.g. discovery reach for the stop mass will be almost 1 TeV at \(\sqrt{s}=14 \text{ TeV} \), 300 fb\(^{-1}\).

ATLAS-PHYS-PUB-2013-011

CMS-CR-2013-255
Backup
In ATLAS, high jet multiplicity (N_{jets}>7-10) with exclusive N(bjets) (0,1,>2) regions are scanned.

In CMS, exclusive signal regions categorized by N(jets), HT, ETmiss are scanned.

Results of exclusive signal regions.
2-lepton Same Sign

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(b-jets)</td>
<td>0, >1, >3</td>
<td>0,1,>2</td>
</tr>
<tr>
<td>N(jets)</td>
<td>>3, >5</td>
<td>[2,3],>4</td>
</tr>
<tr>
<td>(E_T^{miss})</td>
<td>>150 GeV</td>
<td>[50,120],>120 GeV</td>
</tr>
<tr>
<td>(H_T)</td>
<td>[200,400],>400 GeV</td>
<td>>500, 80 GeV</td>
</tr>
<tr>
<td>(m_{eff})</td>
<td>>300 GeV, < 150 GeV</td>
<td></td>
</tr>
</tbody>
</table>

\[
m_{eff} = \sum p_T^{lepton} + \sum p_T^{jet} + E_T^{miss}
\]

26 March 2014
Moriond QCD and High Energy Interactions
23
Summary Gluino Mediated Stop Production

- Various searches interpret their results in gluino mediated stop production models.
 - More will be shown in the next talk about “Inclusive SUSY Searches at the LHC” by Sezen Sekmen.
Direct Sbottom MT2 Analysis

- In CMS, m_{T2} which is similar to m_{CT} is also used for sbottom search to reduce ttbar background.

Signal regions are categorized by jet and b-jet multiplicity and H_T and E_T^{miss} exclusively.

\[
MT2(m_{\chi}) = \min_{p_T^{(1)}+p_T^{(2)}=p_T^{\text{miss}}} \left[\max \left(M_T^{(1)}, M_T^{(2)} \right) \right]
\]
Stop Polarization

- Composition of stopR, stopL in stop1 affects signal acceptance especially in semi-leptonic decay.
 - Top quark polarization changes the boost of lepton in the decay.
 - Weaker sensitivity is obtained with left-handed top.
Razor Analysis

- Razor analysis also interpret direct stop pair production models.
 - After categorizing events by the number of jets, b-jets, leptons, two “megajets” are formed from jets and leptons to minimize the sum of invariant mass of two megajets.
 - Razor variables are defined from these megajets.

\[
M_R = \sqrt{(p_{j1} + p_{j2})^2 - (p_{j1}^1 + p_{j2}^1)^2}
\]

\[
M_T^R = \sqrt{E_{T}\text{miss} \cdot (p_{T}^1 + p_{T}^2) - E_{T}\text{miss} \cdot (p_{T}^1 + p_{T}^2) \over 2}
\]

\[
R = \frac{M_T^R}{M_R}
\]

SUSY signals have a peak in R^2-M_R plane while SM background fall smoothly.
Stop to Charm

- If \(m(\tilde{t}) - m(\tilde{\chi}_1^0) < m(b) + m(W^\pm) \), dominant stop decay can be via charm quark.
- Both ATLAS and CMS perform mono-jet like searches exploiting ISR jet(s) from signal.
- In ATLAS, charm-tagging is also used to enhance c-jet signal.

Table

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monojet-like</td>
<td>Charm-tagged</td>
</tr>
<tr>
<td>(E_{T,\text{miss}})</td>
<td>> 220 GeV</td>
<td>> 410 GeV</td>
</tr>
<tr>
<td>Leading jet</td>
<td>(p_T > 280) GeV</td>
<td>(p_T > 270) GeV</td>
</tr>
<tr>
<td>2nd leading jet</td>
<td>(b)-veto</td>
<td>(b)-veto</td>
</tr>
<tr>
<td>3rd leading jet</td>
<td>(b)-veto</td>
<td>(p_T < 60) GeV</td>
</tr>
<tr>
<td>4th leading jet</td>
<td>(p_T < 30) GeV</td>
<td>(p_T > 30) GeV, c-tag</td>
</tr>
</tbody>
</table>

ATLAS-CONF-2013-068

CMS-PAS-SUS-13-009

26 March 2014

Moriond QCD and High Energy Interactions