Heavy-Flavor flow and transport in the QGP at RHIC with STAR

51st Rencontres de Moriond
QCD and High Energy Interactions
La Thiule, IT
25/Mar/2016
Heavy Flavors in Heavy Ions

- Heavy quarks produced early: initial hard parton collision
- Total charm/bottom yield is conserved throughout QGP evolution in AA collisions
 - $m_c, m_b \gg T_{QGP}$
 - Momentum spectrum is modified in QGP
 - Collisional, radiative energy loss for heavy quarks
 - Study via Nuclear modification factor of D^0 mesons.
- Low p_T: Momentum transfer from thermal medium is small compared to heavy quark momentum
 - Brownian motion in an expanding QGP
- Insight into dynamics, transport properties of QGP
 - Moore, Teaney PRC71 (2005) 064904
- Experimental study using azimuthal momentum distributions, “elliptic flow” (v_2), of D^0 mesons.
Azimuthal anisotropy: Elliptic flow, v_2

- AA collision region: overlap of two spherical nuclei, ellipsoid
 - Fourier expansion of azimuthal distribution wrt reaction plane (Ψ_n)
 \[\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_n)] \]
 - 2nd coefficient, v_2, well described using relativistic hydrodynamics
 - "Elliptic flow"
 - Light hadron v_2: scales with number of constituent quarks.

- Charm hadron v_2:
 - Test particle inside QGP fluid
 - Insight into transport properties of QGP

As seen in atomic systems: Science, 298, (2002) 2179
STAR Heavy Flavor Tracker

- Pixels
 - $r \sim 2.8$, 8 cm

- Intermediate Silicon Tracker (IST)
 - $r \sim 14$ cm

- Silicon Strip (SSD)
 - $r \sim 22$ cm

Allows direct topological reconstruction of charmed hadrons in the challenging heavy ion environment
DCA$_{xy}$ resolution \sim 30-40 μm at $p\sim$1 GeV/c

- **D0** analysis with HFT:
 - Background rejection by 4 orders of magnitude
- Signals for D$^\pm$ and D$_s$ observed

25-Mar-16

Manuel Calderón de la Barca Sánchez
Good signal significance
- Great improvement over 2010-2011 STAR: PRL 113 (2014) 142301
- Signal significance allows study of azimuthal anisotropy vs. p_T
D₀ Nuclear Modification, \(R_{AA} \)

- \(R_{AA} \): Quantify deviations from pp behavior
 \[
 R_{AA} = \frac{1}{N_{\text{bin}}} \frac{dN_{AA}}{dp_T} \bigg/ \frac{dN_{pp}}{dp_T}
 \]

- If AA is a superposition of \(N_{\text{bin}} \) nucleon-nucleon collisions: \(R_{AA} = 1 \)

- Central collision data:
 - \(R_{AA}(D) > 1 \) @ \(p_T \sim 1.5 \) GeV
 - Evidence of charm coalescence with light quarks expanding from bulk QGP medium

- \(R_{AA}(D) \) for higher \(p_T \): significant suppression
 - Significant interaction of c quarks with medium, c quark energy loss
 - Suppression of D₀ is similar to that of mesons containing light quarks

STAR D0 (2010-11 data): PRL 113 (2014) 142301
STAR π : PLB 655 (2007) 104
Azimuthal Anisotropy via Event Plane Method

- Measure $D^0 \phi$ distribution wrt event plane
- Fit: $N(1+2v_2\cos(2(\phi-\Psi)))$
 - Extract $v_2\{\text{EP}\}$
 - Require rapidity gap ($\Delta\eta \sim 0.15$) between D^0 and particles used to measure event plane.
 - Reduce background, e.g. from di-jets, resonance decays.
 - Alternate method, $v_2\{2\}$: 2-particle correlation between D^0 and all other hadrons. (not shown)
 - Different systematics.

25-Mar-16
Manuel Calderón de la Barca Sánchez
D^0 azimuthal anisotropy, v_2

- **Observe finite v_2 for charm mesons**
 - D^0 v_2 > 0 @ p_T > 2

Remarks:
- B feeddown contribution is small at RHIC, < 5%
- Estimate contributions unrelated to reaction plane azimuthal correlation ("non-flow") using D*-h correlations in pp @ 200 GeV
Comparison with light flavor v_2

- Hadrons including u,d,s quarks:
 - Show similar v_2 behavior when scaled by Number of Constituent Quarks
 - Evidence of light-quark collective behavior in a QGP

- Compare D^0 to light quark hadrons
 - scaled D^0 v_2 smaller than light flavor hadrons
 - Indication that charm is not fully thermalized
D⁰ elliptic flow and c-quark diffusion

- Compare to calculations with/without c-quark diffusion.
 - TAMU transport model:
 - T-Matrix, non-perturbative

Calculation with diffusion is favored
- $\chi^2/\text{ndf} \sim 2.1/5$, vs. 7.4/5

D⁰ R_{AA} and ν₂ comparison

Diffusion calculations:

- **TAMU:**
 \[2\pi T D_s = 2 - 7 \]

- **Subatech:**
 - Gossiaux et al.
 - pQCD + hard thermal loop
 \[2\pi T D_s = 2 - 4 \]

- **Duke:**
 - Cao et al. PRC92 (2015) 024907
 - Constant Ds, fit to LHC high p_T R_{AA}
 \[2\pi T D_s = 7 \]

- **PHSD: Parton-Hadron-String Dynamics**
 - Berrehrah et al. PRC90 051901 (2014)
 - Transport model
 \[2\pi T D_s = 5 - 12 \]

25-Mar-16 Manuel Calderón de la Barca Sánchez
Models incorporating charm diffusion are consistent with STAR R_{AA} and new v_2 results.

\[2\pi T D_s \sim 2 - 10 \]

Lattice calculations are consistent with this range of values inferred from STAR D^0 data.
D_s results from STAR HFT

- Expect enhancement of D_s in AuAu
 - More abundant s-quark production compared to pp

- Observe larger D_s/D_0 ratio in AuAu compared to PYTHIA pp simulation.
Outlook for D^0 and HFT in STAR

- **Run 14 AuAu:**
 - Prelim. results based on \sim70% of available stats.
 - Full statistics coming soon.

- **Run 15 data:**
 - $p+p$: baseline measurements
 - $p+Au$: study Cold Nuclear Matter effects

- **Run 16 AuAu:**
 - Expect 2B events (compared to 1.2 B in Run 14)
 - Al cables for inner layer of Pixel detector
 - 0.5% \rightarrow 0.4% X_0.
 - Factor 2-3 improvement in significance for D^0
 - Allow study of centrality dependence

25-Mar-16
Manuel Calderón de la Barca Sánchez
Summary

- STAR HFT: measurement of D^0 mesons
 - Observe modifications of p_T spectrum
 - Transverse flow and charm energy loss:
 - charm has significant interactions with produced medium.
 - Observe finite D^0 azimuthal anisotropy v_2.
 - Suggests collective behavior of charm quarks
 - Measurements can provide information on diffusion coefficient of QGP medium
 - Models with 2πTDs $\sim 2 - 10$ are consistent with our data

25-Mar-16
Manuel Calderón de la Barca Sánchez
Backup
D meson R_{AA} at RHIC is similar to LHC for $p_T > 4$ GeV/c
D⁰ v₂ Comparison with LHC

- D⁰ v₂ LHC results:
 - similar to v₂ for light flavors.

- D⁰ v₂ STAR results:
 - lower than v₂ for light flavors

- Indications that charm is fully thermalized at LHC but not at RHIC

- Need systematic theoretical studies of heavy flavor production at both energies