Top Pair Production with a Jet with NLO QCD Off-Shell Effects

Malgorzata Worek

51st Rencontres de Moriond - QCD and High Energy Interactions, La Thuile, 19th - 26th March 2016
Plan

- Motivation for ttj production at the LHC
- Motivation for top-quark off-shell effects based on tt production
- Complete off-shell effects with HELAC-NLO for ttj
- Results for LHC @ 8 TeV
- Summary & Outlook

Collaborators:
- G. Bevilacqua (University of Debrecen)
- H. B. Hartanto (RWTH Aachen University)
- M. Kraus (RWTH Aachen University)
ttj Process

- @ LHC tops are produced with large energies & high transverse momenta
- Increase probability for additional (hard) radiation of gluons → ttj final state
- How big is the contribution of ttj in the inclusive tt sample?
- NNLO tt cross section for $m_t = 173.2$ GeV @ LHC$_{13}$ TeV with CT14 PDF set:

\[
\sigma(tt) = 807 \text{ pb}
\]

Table:

<table>
<thead>
<tr>
<th>Jet p_T cut [GeV]</th>
<th>$\sigma(ttj)$ [pb]</th>
<th>$\sigma(ttj)/\sigma(tt)$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>296.97 ± 0.29</td>
<td>37</td>
</tr>
<tr>
<td>60</td>
<td>207.88 ± 0.19</td>
<td>26</td>
</tr>
<tr>
<td>80</td>
<td>152.89 ± 0.13</td>
<td>19</td>
</tr>
<tr>
<td>100</td>
<td>115.60 ± 0.14</td>
<td>14</td>
</tr>
<tr>
<td>120</td>
<td>89.05 ± 0.10</td>
<td>11</td>
</tr>
</tbody>
</table>

TOP++, Czakon, Mitov '14

HELAC-NLO, G. Bevilacqua et al., '13
Background for SM Higgs production in VBF: $qq \rightarrow Hqq \rightarrow WWqq$

- 2 tagging jets: $\Delta y_{jj} = |y_{j1} - y_{j2}| > 4$ \& $y_{j1} \times y_{j2} < 0$

- ↓ tt background: tt \rightarrow WWbb \& ↑ ttj background: ttj \rightarrow WWbj

![Graphs showing the distribution of dy_{j1} and dy_{b1}](image)
Off-Shell Effects

- Larger impact on differential distributions
- Full NWA (tt) versus full calculation (WWbb) for $p_T(bb)$

- Controlled by the ratio $\Gamma_t/m_t \approx 10^{-2}$
- For σ_{tot} at few % level (tt, ttj & ttH)

A. Denner et al. '11, '12, '15
G. Bevilacqua et al. '11, '16
R. Frederix '14
F. Cascioli et al. '14
G. Heinrich et al '14
Off-Shell Effects for tt

- Full NWA (tt) versus full calculation ($WWbb$) for M_{e+b}

- If both top and W decay on-shell → end-point given by sharp cut

 $$M_{\ell b} = \sqrt{m_t^2 - m_W^2} \approx 152 \text{ GeV}$$

- Additional radiation & off-shell effects introduce smearing

A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini, M. Schulze ‘12
Off-Shell Effects for ttj

$pp \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j + X$

- ttj with leptonic decays at $\mathcal{O}(\alpha_s^4\alpha^4)$
- 2 \rightarrow 5 process from the QCD point of view
- Diagrams with complete off-shell effects for top & W gauge boson for gg initial state:
 - \star LO: 508
 - \star Real emission: 4447
Off-Shell Effects for ttj

- gg channel comprises $39 \ 180$ one-loop diagrams \rightarrow according to QGRAF

 $P. \ Nogueira \ '93$

- The most complicated ones are 1155 hexagons & 120 heptagons
- Tensor integrals up to rank six

NWA for ttj (on-shell top-quark production)
- up to pentagons !

Full calculations for ttj
- up to heptagons !
Intermediate Top Resonances

- Putting simply $\Gamma_t \neq 0$ violates gauge invariance
- Gauge-invariant treatment \rightarrow complex-mass scheme
- Γ_t incorporated into top mass via:

$$\mu_t^2 = m_t^2 - i m_t \Gamma_t$$

- All matrix elements evaluated using complex masses
- μ_t^2 identified with the position of pole of top-quark propagator
- Top-mass counter-term $\delta \mu_t$ related to top-quark self-energy at: $p_t^2 = \mu_t^2$

- Another non trivial aspect: evaluation of one-loop scalar integrals in presence of complex masses!
- Scalar integrals with complex masses \rightarrow supported e.g. by ONELOOP

A. Denner, S. Dittmaier, M. Roth, D. Wackeroth '99
A. Denner, S. Dittmaier, M. Roth, L. H. Wieders '05

A. van Hameren '11
HELAC-NLO

HELAC-NLO

HELAC-1LOOP
A. van Hameren, C.G. Papadopoulos, B. R. Pittau '09

HELAC-DIPOLES
M. Czakon, C.G. Papadopoulos, M. Worek '09

KALEU
A. van Hameren '10

CUTTOOLS
G. Ossola, C.G. Papadopoulos, R. Pittau '08

ONELOOP
A. van Hameren '11

G. Bevilacqua, M. Czakon, M. Kubocz, M. Worek '13
Off-Shell Effects for ttj

$$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}j + X$$

- Different lepton generations → to avoid virtual photon singularities $\gamma \rightarrow ll$
- Effects at the level of 0.5% → checked @ LO
- Diagrams for gg initial state @ LO: 508 for $e^+\mu^-$ → 1240 for e^+e^-
- SM Parameters in G_μ scheme:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_F</td>
<td>$1.16637 \cdot 10^{-5}$ GeV$^{-2}$</td>
</tr>
<tr>
<td>m_t</td>
<td>173.3 GeV</td>
</tr>
<tr>
<td>m_W</td>
<td>80.399 GeV</td>
</tr>
<tr>
<td>m_Z</td>
<td>91.1876 GeV</td>
</tr>
<tr>
<td>Γ_W</td>
<td>2.09974 GeV</td>
</tr>
<tr>
<td>Γ_Z</td>
<td>2.50966 GeV</td>
</tr>
<tr>
<td>Γ_t^{LO}</td>
<td>1.48132 GeV</td>
</tr>
<tr>
<td>Γ_t^{NLO}</td>
<td>1.3542 GeV</td>
</tr>
</tbody>
</table>

- MSTW2008 set of PDF & $\mu_R = \mu_F = \mu_0 = m_t$
- All light quarks including b-quarks and leptons are massless
- Suppressed contribution from b quarks in the initial state neglected
- Amounts to 0.8% @ LO
Top Width for Unstable W Bosons

- Finite W width contributions included in matrix elements & in Γ_t
- Top width for unstable W bosons, neglecting bottom quark mass @ LO & NLO

\[
\Gamma_t^{\text{LO}} = \frac{G_\mu m_t^5}{16\sqrt{2}\pi^2 M_W^2} \int_0^1 \frac{dy \gamma_W}{(1 - y/\bar{y})^2 + \gamma_W^2} F_0(y)
\]

\[
\gamma_W = \Gamma_W/M_W, \quad \bar{y} = (M_W/m_t)^2 \quad \quad F_0(y) = 2(1 - y)^2(1 + 2y)
\]

\[
\Gamma_t^{\text{NLO}} = \frac{G_\mu m_t^5}{16\sqrt{2}\pi^2 M_W^2} \int_0^1 \frac{dy \gamma_W}{(1 - y/\bar{y})^2 + \gamma_W^2} \left[F_0(y) - \frac{2\alpha_s}{3\pi} F_1(y) \right]
\]

\[
F_1(y) = 2(1 - y)^2(1 + 2y) \left[\pi^2 + 2 \text{Li}_2(y) - 2 \text{Li}_2(1 - y) \right]
+ 4y(1 - y - 2y^2) \ln(y) + 2(1 - y)^2(5 + 4y) \ln(1 - y)
- (1 - y)(5 + 9y - 6y^2).
\]

- In the limit $\gamma_W \to 0$

\[
\frac{\gamma_W}{(1 - y/\bar{y})^2 + \gamma_W^2} \to \pi \bar{y} \delta(y - \bar{y}).
\]

M. Jezabek, J. H. Kühn ‘89
A. Denner, et al. ‘12
Cuts

\[pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}j + X \]

- **Jets:**
 - Final-state quarks and gluons with pseudo-rapidity \(|y| < 5\) converted into infrared-safe jets using *anti-\(k_T\) jet* algorithm with \(R=0.5\)

- **Requirement:**
 - exactly 2 b-jets, at least one light-jet, 2 charged leptons, and missing \(p_T\)

- **Final states:**
 - have to fulfill the following kinematical requirements (fairly inclusive cuts)

\[
\begin{align*}
 p_{T\ell} &> 30 \text{ GeV} , \\
p_{Tj} &> 40 \text{ GeV} , \\
p_{T}^{\text{miss}} &> 40 \text{ GeV} , \\
\Delta R_{jj} &> 0.5 , \\
\Delta R_{\ell\ell} &> 0.4 , \\
\Delta R_{\ell j} &> 0.4 , \\
|y_\ell| &< 2.5 , \\
|y_j| &< 2.5 ,
\end{align*}
\]
Scale Dependence

- Total cross section @ LHC with 8 TeV (MSTW2008 PDF)

\[pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} j + X \]

\[\sigma^{\text{LO}}_{\text{HELAC-NLO}} = 183.1^{+112.2(61\%)}_{-64.2(35\%)} \text{ fb}, \]

\[\sigma^{\text{NLO}}_{\text{HELAC-NLO}} = 159.7^{+33.1(21\%)}_{-7.9(5\%)} \text{ fb}. \]

- NLO corrections: -13%

- Theoretical uncertainties:
 - ★ 61% (48%) @ LO
 - ★ 21% (13%) @ NLO

\[\mu_R = \mu_F = \mu_0 = m_t \]

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16
Hardest Light-Jet

- Upper panel: distributions and scale dependence bands: \{0.5m_t, m_t, 2m_t\}
- Lower panel: differential K-factor

- NLO do not rescale shape of LO
- Distortions up to 50\% with \(\mu_0 = m_t \)
- Properly described only via NLO
- Negative NLO in \(p_T \) tails
 \(\rightarrow \) LO higher than NLO

- The dynamic scale should depend on hardest jet \(p_T \uparrow \)
- Asymptotic freedom \(\rightarrow \alpha_s \downarrow \) in tails
- Dependence on \(\alpha_s \) @ LO \(>> @ \) NLO
- Would drive positive NLO/LO ratio in this region

\[pp \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}j + X \]

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16
Hardest Light-Jet

- Upper panel: distributions and scale dependence bands
- Lower panel: differential K-factor

- Negative, moderate but ... quite stable NLO corrections
- Dimensionless nature of y_j
- Receives contributions from various scales \rightarrow also from these sensitive to threshold for ttj production
- For $\mu_0 = m_t$ effects of phase-space regions close to ttj threshold dominate

$$ pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu \bar{b}b j + X $$

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16
Lepton and b-Jet

- Upper panel: distribution and scale dependence bands
- Lower panel: differential K-factor
- $b\ell^+$ pair that returns the smallest invariant mass

$M_{b\ell^+} = \sqrt{m_t^2 - m_W^2} \approx 153 \text{ GeV}$

- If both top and W decay on-shell \Rightarrow end-point given by sharp cut
- Additional radiation & off-shell effects introduce smearing
- Highly sensitive to the details of the description of the process

$pp \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}j + X$

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16
Summary

- Complete description for ttj process with “resonant” and “non-resonant” contributions at NLO QCD

- Further studies are needed:
 - Look for judicious choice of a dynamical scale
 - PDF uncertainties
 - Bottom-mass effects
 - Off-shell effects for differential distributions (comparison to NWA)

- Phenomenological applications $\Rightarrow m_t$ extraction

- Shape-based m_t measurement relies on precise modeling of differential distributions

- m_t extraction < 1 GeV \Rightarrow Predictions should go beyond simple approximation of factorizing top production & decays
Outlook

- Alternative method for m_t
- m_t from normalized differential cross section for ttj

\[\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}}} \frac{d\sigma_{t\bar{t}+1\text{-jet}}}{d\rho_s}(m_t^{\text{pole}}, \rho_s), \]

\[\rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}+1\text{-jet}}}}, \]

- \mathcal{R} has been calculated using ttj @ NLO + POWHEG matched with PYTHIA → top-quark decays via PS with spin correlations @ LO
- Theoretical uncertainties & PDF uncertainties should affect m_t extraction < 1 GeV
- ATLAS @ 7 TeV: $m_t = 173.7 \pm 2.2$ GeV
- Worth looking at

S. Alioli, et al. ‘13

ATLAS, arXiv:1507.01769
Backup slides...
ttj Process

- Background to supersymmetric particle production
- Top decays into W and b-quark \rightarrow SM: $t \rightarrow Wb \approx 100\%$
- **Decay channels:** di-leptons ($Br = 4\%$), lepton+jet ($Br = 30\%$), all-jets ($Br = 46\%$)
 - **ttj signature:** jets, charged leptons & $p_T(\text{miss})$ from invisible neutrinos
 - **Typical signals:** jets, charged leptons & $p_T(\text{miss})$ due to escaping lightest supersymmetric particle (neutralino)

Chain decays of gluino

M. L. Mangano ‘09
Top flavor violating resonances, singly produced in association with top at LHC

- $\tilde{t} = t$ for $M = W', Z'_H$ and $\tilde{t} = t$ when $M = \phi^a$ (color triplet or sextet)

- W' signal: $W' \rightarrow \tilde{t}q$
- Production processes: $pp \rightarrow W't \rightarrow ttj$

- $m_{W'} \in \{200, \ldots, 600\}$ GeV
- $\sigma_{7\text{TeV}} \in \{40, \ldots, 4\}$ pb

- ATLAS: $m_{W'} > 430$ GeV

$\begin{align*}
\mathcal{L}_{W'} &= \frac{1}{\sqrt{2}} \bar{d} \gamma^\mu g_R P_L t W'_\mu + \text{H.c.}, \\
\mathcal{L}_{Z'_H} &= \frac{1}{\sqrt{2}} \bar{u} \gamma^\mu g_R P_R t Z'_H\mu + \text{H.c.}, \\
\mathcal{L}_\phi &= \bar{t} c T^a_f (g_L P_L + g_R P_R) u \phi^a + \text{H.c.},
\end{align*}$

M. I. Gresham, I.-W. Kim, K. M. Zurek '11

arXiv:1209.6593
b-Jet

- Upper panels: distributions and scale dependence bands
- Lower panels: differential K-factors

$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}j + X$

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16
Leptons

- Upper panels: distributions and the scale dependence bands
- Lower panels: differential K-factors

\[pp \rightarrow e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b} j + X \]

G. Bevilacqua, H. B. Hartanto, M. Kraus, M. Worek '16
Theoretical Predictions for ttj

- NLO QCD corrections to on-shell ttj production

 $S.\ Dittmaier, \ P.\ Uwer, \ S.\ Weinzierl\ \prime\ 07\ \prime\ 09$

- NLO QCD correction to on-shell ttj production with LO decays

 $K.\ Melnikov,\ M.\ Schulze\ \prime\ 10$

- NLO QCD corrections to ttj in NWA (with jet radiation in top-quark decays)

 $K.\ Melnikov,\ M.\ Schulze\ \prime\ 12$

- NLO QCD corrections to ttj with full top-quark and W off-shell effects

 $G.\ Bevilacqua,\ H.\ B.\ Hartanto,\ M.\ Kraus,\ M.\ Worek\ \prime\ 16$

- NLO QCD correction to on-shell ttj production + PS

 ★ **POWHEG + PYTHIA**, no spin correlations

 $A.\ Kardos,\ C.\ G.\ Papadopoulosa,\ Z.\ Trocsanyi\ \prime\ 11$

 ★ **POWHEG + PYTHIA/HERWIG** with spin-correlations @ LO

 $S.\ Alioli,\ S.Moch,\ P.\ Uwer\ \prime\ 12$

 ★ **MC@NLO + DEDUCTOR**, without top-quark decays

 $M.\ Czakon,\ H.\ B.\ Hartanto,\ M.\ Kraus,\ M.\ Worek\ \prime\ 15$
NWA for \(ttj\)

- **Inclusive NLO \(\sigma(ttj)\) in NWA convolution of production \(\sigma(tt+nj)\) & \(\Gamma(tt+nj)\) \(n \leq 2\)**

\[
\begin{align*}
\frac{d\sigma_{\text{incl}}}{dt} &= \Gamma_{t,tot}^{-2}(d\sigma_{t\bar{t}+0j} + d\sigma_{t\bar{t}+1j} + d\sigma_{t\bar{t}+2j} + \cdots) \\
&\otimes (d\Gamma_{t\bar{t}+0j} + d\Gamma_{t\bar{t}+1j} + d\Gamma_{t\bar{t}+2j} + \cdots).
\end{align*}
\]

- **Expanded version with terms up to \(\alpha_s^4\) only**

\[
\frac{d\sigma_{\text{NLO}}}{d\alpha_s^{ttj}} = \Gamma_{t,tot}^{-2}(d\sigma_{\text{LO}}^{ttj} d\Gamma_{\text{LO}}^{ttj} + d\sigma_{\text{LO}}^{ttj} d\Gamma_{\text{LO}}^{ttj}) + (d\sigma_{\text{virt}}^{ttj+1j} + d\sigma_{\text{real}}^{ttj+2j}) d\Gamma_{\text{LO}}^{ttj} + d\sigma_{\text{LO}}^{ttj} (d\Gamma_{\text{virt}}^{ttj+1j} + d\Gamma_{\text{real}}^{ttj+2j})
\]

(a) jet emission in production
(b) jet emission in decay
(c) mixed contribution

K. Melnikov, M. Schulze '12
NWA for ttj

$LHC@7\,TeV$ with inclusive cuts

$$\sigma_{LO} = 316.9\,(Pr) + 33.4\,(Dec) = 350.3\,fb,$$

$$\sigma_{NLO} = 323\,(Pr) + 40.5\,(Dec) - 75.5\,(Mix) = 288\,fb.$$

14% 26%

K. Melnikov, M. Schulze ‘12

$\frac{d\sigma}{dp_T(\ell^+)}$ [fb/GeV]

$\frac{d\sigma}{dp_T(jet)}$ [fb/GeV]

$\frac{d\sigma}{dm(\ell^+\ell^-)}$ [fb/GeV]

Full NWA versus NWA with LO decays