PHENIX Measurements of Heavy Flavor Production and Spin Asymmetries in $p+p$ Collisions at RHIC

Jeongsu Bok (New Mexico State University, USA) for the PHENIX Collaboration

Moriond QCD 2017
Outline

• Transverse Single Spin Asymmetries
• Open Heavy Flavor studies using muon spectrometers in PHENIX
• Cross section and Transverse Single Spin Asymmetry of heavy flavor in $p+p$ collisions in PHENIX
• Summary and outlook
Transverse Single Spin Asymmetry A_N

Transverse Single Spin Asymmetries A_N

$$A_N = \frac{\sigma^\uparrow_L - \sigma^\uparrow_R}{\sigma^\uparrow_L + \sigma^\uparrow_R}$$

Theory Expectation:
Small asymmetries at high energies
(Kane, Pumplin, Repko, PRL 41, 1689–1692 (1978))

$$A_N \propto \frac{m_q}{\sqrt{s}}$$
$A_N \sim O(10^{-4})$

Experiments:
ZGS, AGS, FERMILAB to RHIC

$A_N \sim O(10^{-1})$ observed at forward rapidity
$\sqrt{s} = 5 \sim 500$ GeV
Mechanisms for A_N

<table>
<thead>
<tr>
<th>Transverse-momentum-dependent (TMD) Factorization</th>
<th>Collinear Factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable</td>
<td></td>
</tr>
<tr>
<td>works at $Q \gg Q_T \geq \lambda_{\text{QCD}}$ needs 2 scales (Q^2 and p_T)</td>
<td>works at $Q, Q_T \gg \lambda_{\text{QCD}}$ needs 1 scale (Q^2 or p_T)</td>
</tr>
<tr>
<td>$p+p$ observables</td>
<td></td>
</tr>
<tr>
<td>DY, W, Z</td>
<td>π^0, γ, jet, Heavy Flavor, ...</td>
</tr>
<tr>
<td>Initial state</td>
<td></td>
</tr>
<tr>
<td>Sivers mechanism – proton spin and quark k_T correlation</td>
<td>Twist-3 multi-parton correlation functions</td>
</tr>
<tr>
<td>Final state</td>
<td></td>
</tr>
<tr>
<td>Collins mechanism – proton spin and quark spin correlation, quark spin and hadron k_T correlation</td>
<td>Twist-3 fragmentation functions</td>
</tr>
</tbody>
</table>
Theory prediction for heavy flavor A_N

- Heavy Flavor (especially D meson) production is an ideal tool to investigate gluon distribution.

- Twist-3 three-gluon correlation in the collinear factorization framework

- $A_N(D^0, \bar{D}^0)$ by gluon-fusion ($gg \rightarrow c \bar{c}$)

Y. Koike, S. Yoshida PRD84:014026 (2011)
Polarized $p+p$ collision at RHIC

- Helicity controllable up to 510 GeV
 - Transverse, Longitudinal
- 2012 $p+p$ 200 GeV run
 - Transversely polarized $P_B=0.64$, $P_Y=0.59$, $L_{int}=9.2\,pb^{-1}$
PHENIX Detectors

- **Philosophy**
 - high resolution & high-rate
 - trigger for rare events

- **Central Arms**
 - $|\eta| < 0.35$, $\Delta\phi \sim \pi$
 - Momentum, EM Energy

- **Muon Arms**
 - $1.2 < |\eta| < 2.4$
 - Momentum
 - High p_T muons

- **Muon piston calorimeter**
 - $3.1 < |\eta| < 3.9$
 - EM Energy
 - π^0 and η
Open Heavy Flavor A_N

Relative contributions of signal and backgrounds

- Signal at MuID Gap 4: (1) Open Heavy Flavor
- Background measured at MuID Gap 2,3: (2) Stopped Hadron
- Background at MuID Gap 4: (3) Decay Muon, (4) Punch Through

(1) Open Heavy Flavor ($D,B\to\mu$ signal)

(2) Stopped hadron (π,K background)

(3) Decay muon ($\pi,K\to\mu$ background)

(4) Punch through (π,K background)
Open Heavy Flavor Cross Section

\(p_T \) spectra of inclusive muon candidates and background sources from the hadron cocktail simulation

- \textit{arXiv:1703.09333}

Invariant cross section of muons from open heavy flavor decays at forward rapidity, compared to FONLL calculation.
Open Heavy Flavor A_N

\[A^{Phys}_N = \frac{A^{incl}_N - r \cdot A^{BG}_N}{1 - r} \]

\[r = \frac{N^{BG}}{N^{incl}} = \frac{(N^{incl} - N^{signal})}{N^{incl}} \]

- A^{incl}_N: Inclusive MUID gap4 tracks
- A^{BG}_N: Background (gap2,3 stopped hadron, J/ψ)
- r: non-distinguishable remaining background fraction in gap4 inclusive tracks
 - Each A_N is calculated by Maximum Likelihood Method
 - P: polarization
 - ϕ_{pol}: beam polarization direction
 - ϕ_i: azimuthal angle of each track

signal-to-background ratio
Run12 $p+p$ 200 GeV

\[\mathcal{L} = \prod (1 + P \cdot A_N \sin(\phi_{pol} - \phi_i)) \]
Open Heavy Flavor A_N

- Open heavy flavor A_N as a function of p_T
- Twist-3 model curves are for muons using PYTHIA simulation ($D \to \mu$)
 - Y. Koike, S. Yoshida PRD84:014026 (2011)
 - A_N calculations for D mesons (D^0, \bar{D}^0, D^+, D^-) are provided by S. Yoshida (LANL)

• $arXiv:1703.09333$
Open heavy flavor A_N as a function of x_F

- Results are consistent with zero within uncertainties, agree with the twist-3 model calculations.

• arXiv:1703.09333
Summary and Outlook

• Summary
 • Cross section and Transverse Single Spin Asymmetry of muons from open heavy flavor decay are measured in transversely polarized $p+p$ 200 GeV collisions in PHENIX experiment at RHIC.
 • Transverse Single Spin Asymmetry is consistent with zero within uncertainties, agrees with the twist-3 model calculation in the collinear factorization framework.

• Outlook
 • Improved statistics $p+p$ data in 2015 could provide constraints on the three-gluon correlation functions.
 • Polarized $p+A(Au,Al)$ data in 2015 are also interesting.
Thank you!
charge separated invariant cross section of muons from open heavy flavor decays at forward rapidity

• arXiv:1703.09333