Precision calculations for $h \rightarrow WW/ZZ \rightarrow 4\text{fermions}$ in the THDM with PROPHECY4F

Stefan Dittmaier
Albert-Ludwigs-Universität Freiburg

(in collaboration with L.Altenkamp and H.Rzehak; see arXiv:1704.02645 and arXiv:1710.07598)
Contents

Introduction

Renormalization of the THDM

NLO corrections to $h \rightarrow WW/ZZ \rightarrow 4$fermions

Numerical results

Conclusions
Introduction
Some central LHC results from profiling the Higgs boson

Decay signal strength:

Fit of coupling modifiers:

\[\mu = \frac{\Gamma_{\text{exp}}}{\Gamma_{\text{SM}}} \]

Compatibility with Standard Model

Reveal BSM effects with higher precision?

⇒ Precision calculations in BSM models necessary

→ THDM considered in this talk
Renormalization of the THDM
THDM Lagrangian and Higgs fields

Lagrangian: restriction to CP-conserving case!

\[\mathcal{L}_{\text{Higgs}} = (D_\mu \Phi_1)^\dagger (D^\mu \Phi_1) + (D_\mu \Phi_2)^\dagger (D^\mu \Phi_2) - V(\Phi_1, \Phi_2), \]

\[D_\mu = \partial_\mu - ig_2 I^a W_\mu^a + ig_1 \frac{Y_W}{2} B_\mu \]

Higgs potential:

\[V = m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 - m_{12}^2 (\Phi_1^\dagger \Phi_2 + \Phi_2^\dagger \Phi_1) + \frac{1}{2} \lambda_1 (\Phi_1^\dagger \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^\dagger \Phi_2)^2 + \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2) + \lambda_4 (\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1) + \frac{1}{2} \lambda_5 \left[(\Phi_1^\dagger \Phi_2)^2 + (\Phi_2^\dagger \Phi_1)^2 \right] \]

Two complex scalar SU(2) doublets: \(v_{1,2} = \text{vevs} \)

\[\Phi_1 = \left(\frac{1}{\sqrt{2}} \left(\eta_1 + i \chi_1 + v_1 \right) \right), \quad \Phi_2 = \left(\frac{1}{\sqrt{2}} \left(\eta_2 + i \chi_2 + v_2 \right) \right), \quad Y_W(\Phi_{1,2}) = 1 \]
Transition to the “mass basis”:

CP-even neutral fields:
\[
\begin{pmatrix}
\eta_1 \\
\eta_2
\end{pmatrix}
= \begin{pmatrix}
\cos \alpha & - \sin \alpha \\
\sin \alpha & \cos \alpha \end{pmatrix}
\begin{pmatrix}
H \\
h
\end{pmatrix}
\]

CP-odd neutral fields:
\[
\begin{pmatrix}
\chi_1 \\
\chi_2
\end{pmatrix}
= \begin{pmatrix}
\cos \beta & - \sin \beta \\
\sin \beta & \cos \beta \end{pmatrix}
\begin{pmatrix}
G_0 \\
A_0
\end{pmatrix}, \quad \tan \beta = \frac{v_2}{v_1}
\]

charged fields:
\[
\begin{pmatrix}
\phi_1^\pm \\
\phi_2^\pm
\end{pmatrix}
= \begin{pmatrix}
\cos \beta & - \sin \beta \\
\sin \beta & \cos \beta \end{pmatrix}
\begin{pmatrix}
G^\pm \\
H^\pm
\end{pmatrix}
\]

Higgs potential after diagonalization:
\[
V = -t_h h - t_H H + \frac{1}{2} M_h^2 h^2 + \frac{1}{2} M_H^2 H^2 + \frac{1}{2} M_{A_0}^2 A_0^2 + M_{H+}^2 H^+ H^- + \ldots
\]

tadpoles \rightarrow 0

Transformation of input parameters:

original set: \{\lambda_1, \ldots, \lambda_5, m_{11}^2, m_{22}^2, m_{12}^2, v_1, v_2, g_1, g_2\}

\downarrow

mass basis: \{M_H, M_h, M_{A_0}, M_{H+}, M_W, M_Z, e, \lambda_5, \alpha, \beta, t_H, t_h\}

renormalized on-shell \text{ (MS)}

2 ren. variants

Stefan Dittmaier, *Precision calculations for h→WW/ZZ→4f ...
Rencontres de Moriond – QCD, March 2018 – 7
Renormalization (see also Santos/Barroso ’97; Kanemura et al. ’04; Lopez-Val/Sola ’09; Degrande ’14)

→ follow on-shell renormalization as far as possible/reasonable
related work by Krause et al. ’16; Denner et al. ’16

On-shell renormalization:

• all particle masses: \(M_W, M_Z, M_h, M_H, \ldots \)
• matrix-valued renormalization for all fields:
 \[
 \begin{pmatrix}
 H_0 \\
 h_0
 \end{pmatrix} = \begin{pmatrix}
 1 + \frac{1}{2} \delta Z_H & \frac{1}{2} \delta Z_{Hh} \\
 \frac{1}{2} \delta Z_{hH} & 1 + \frac{1}{2} \delta Z_h
 \end{pmatrix}
 \begin{pmatrix}
 H \\
 h
 \end{pmatrix},
 \]
 etc.

→ no mixing of external (on-shell) states
• elmg. coupling \(\alpha_{em} \) in the Thomson limit

\(\overline{\text{MS}} \) renormalization:

• mixing angles \(\alpha, \beta \)
 \(\leftrightarrow \) e.g. determined by Higgs mixing self-energies
• Higgs self-coupling \(\lambda_5 \)
 \(\leftrightarrow \) e.g. determined by \(HA_0A_0 \) vertex correction

⇒ Renormalization-scale-dependent parameters \(\alpha(\mu_r), \beta(\mu_r), \lambda_5(\mu_r) \)
Tadpole renormalization:

Note: No physical effect (just bookkeeping) if all parameters are fixed by “physical renormalization conditions”!

But: $\overline{\text{MS}}$ parameters in general depend on tadpole renormalization!

Two commonly used variants:

a) Vanishing renormalized tadpoles t_s: $t_{s,0} = t_s + \delta t_s = 0 + \delta t_s$
 - (explicit tadpole loops Γ^S) + $\delta t_s = 0 \implies$ explicit tadpoles can be ignored
 - (implicit) tadpole contributions δt_s in counterterms
 - drawback: $t_{s,0} = \delta t_s$ enters relation between bare basic input parameters \implies potentially gauge-dependent terms $\propto \delta t_s$ enter relations between renormalized parameters and predicted observables

b) Vanishing bare tadpoles $t_{s,0}$: $t_{s,0} = 0$ Fleischer/Jegerlehner '80; Actis et al. '06
 - explicit tadpole loops Γ^S have to included everywhere, technical variant: remove Γ^S from 2-point functions by shift $v_s \rightarrow v_s + \Delta v_s$
 - advantage: no gauge-dep. δt_s terms in relations between bare parameters \implies relation between ren. parameters and observables gauge independent
Different schemes employed in NLO calculation for $h \rightarrow 4f$:

- **$\overline{\text{MS}}(\alpha)$**: see also by Krause et al. ’16; Denner et al. ’16
 - input: β, λ_5, α
 - tadpole treatment a): $t_S = 0$
 - gauge dependent: results tied to ’t Hooft–Feynman gauge

- **$\text{FJ}(\alpha)$**: see also by Krause et al. ’16; Denner et al. ’16
 - input: β, λ_5, α
 - FJ tadpole treatment b): $t_{S,0} = 0$
 - gauge independent

- **$\overline{\text{MS}}(\lambda_3)$**:
 - as $\overline{\text{MS}}(\alpha)$, but α replaced by coupling λ_3 as input
 - gauge independent only in R_ξ gauges at NLO

- **$\text{FJ}(\lambda_3)$**:
 - as $\text{FJ}(\alpha)$, but α replaced by coupling λ_3 as input
 - gauge independent

→ Study renormalization scheme and renormalization scale dependence of results
Running of \overline{MS} parameters: (numerical solution of ren. group eqs.)

Example: $c_{\beta-\alpha}$ in a THDM low-mass scenario of Type I

Scenario A: $M_h = 125$ GeV, $c_{\beta-\alpha} = +0.1$ (Aa) or $c_{\beta-\alpha} = -0.1$ (Ab)

$M_H = 300$ GeV, $M_{A_0} = M_{H^+} = 460$ GeV, $\lambda_5 = -1.9$, $\tan \beta = 2$

default scale: $\mu_0 = \frac{1}{5} (M_h + M_H + M_{A_0} + 2M_{H^+}) = 361$ GeV

Strong dependence of running on renormalization scheme
Conversion between renormalization schemes:

Note: Values of ren. parameters of a model scenario depend on the ren. scheme!

Conversion between schemes (1) and (2) via equality of bare parameters:

\[p_0 = p^{(1)} + \delta p^{(1)}(p^{(1)}) = p^{(2)} + \delta p^{(2)}(p^{(2)}) \]
\[\Rightarrow p^{(2)} = p^{(1)} + \delta p^{(1)}(p^{(1)}) - \delta p^{(2)}(p^{(2)}) \]
\[\Rightarrow p^{(2)} = p^{(1)} + \delta p^{(1)}(p^{(1)}) - \delta p^{(2)}(p^{(1)}) + \ldots \]

Example: \(c_{\beta-\alpha} \) in low-mass scenario A

\[c_{\beta-\alpha} \bigg|_{\text{Scenario A}} \]

\[\mu_r = 361 \text{ GeV} \]

Stefan Dittmaier, *Precision calculations for h \rightarrow WW/ZZ \rightarrow 4 f ...*
Rencontres de Moriond – QCD, March 2018 – 12
NLO corrections to $h \rightarrow WW/ZZ \rightarrow 4 \text{fermions}$
Survey of Feynman diagrams for NLO corrections to $h \rightarrow WW/ZZ \rightarrow 4f$

Lowest order:

$$h \rightarrow VV \rightarrow ff = \sin(\beta - \alpha) M_{SM,LO}$$

Typical one-loop diagrams:

diagrams = $\mathcal{O}(200-400)$

- pentagons
- boxes
- vertices
- self-energies
- counterterms
- tree graphs with real gluon or photons
Details of the NLO calculation

Virtual corrections

- model file generation with \textsc{feynrules}
- diagram generation with \textsc{feynarts}
- amplitude reduction with inhouse Mathematica routines or \textsc{formcalc}
- W/Z resonances treated in the \textit{complex-mass scheme} \hfill Denner, S.D., Roth, Wieders '05
- loop integrals evaluated with \textsc{collier}

Real corrections and Monte Carlo integration

- all amplitudes from SM calculation via rescaling with factor $s^{\beta-\alpha}$ \hfill Catani, Seymour '96; S.D. '99; S.D. et al. '08
- IR singularities treated with dipole subtraction
- multi-channel Monte Carlo integration within \textsc{prophecy4f}

Two independent calculations of all ingredients
Details of the NLO calculation

Virtual corrections

- model file generation with FeynRules
- diagram generation with FeynArts
- amplitude reduction with inhouse Mathematica routines or FORM
- W/Z resonances treated in the complex-mass scheme

Denner, S.D., Roth, Wieders '05

- loop integrals evaluated with COLLIER Real corrections and Monte Carlo integration

- all amplitudes from SM calculation via rescaling with factors
- IR singularities treated with dipole subtraction

Catani, Seymour '96; S.D. '99; S.D. et al. '08

- multi-channel Monte Carlo integration within PROPHET

Two independent calculations of all ingredients

Collier – Hepforge

http://collier.hepforge.org/private/index.html

Collier is hosted by Hepforge, IPPP Durham

Authors

Ansgar Denner Universität Würzburg, Germany
Stefan Dittmaier Universität Freiburg, Germany
Lars Hofer Universität de Barcelona, Spain

Features of the library

COLLIER is a fortran library for the numerical evaluation of one-loop scalar and tensor integrals appearing in perturbative relativistic quantum field theory with the following features:

- scalar and tensor integrals for high particle multiplicities
- dimensional regularization for ultraviolet divergences
- dimensional regularization for soft infrared divergences
 (mass regularization for abelian soft divergences is supported as well)
- dimensional regularization or mass regularization for collinear mass singularities
- complex internal masses (for unstable particles) fully supported
 (external momenta and virtualities are expected to be real)
- numerically dangerous regions (small Gram or other kinematical determinants)
 cured by dedicated expansions
- two independent implementations of all basic building blocks allow for internal cross-checks
- cache system to speed up calculations

If you use Collier for a publication, please cite all the references listed here!
Details of the NLO calculation

Virtual corrections

• model file generation with \textsc{feynrules}
• diagram generation with \textsc{feynarts}
• amplitude reduction with inhouse Mathematica routines or \textsc{formcalc}
• W/Z resonances treated in the \textit{complex-mass scheme} \cite{Denner:2005fg,Denner:2001ia}
• loop integrals evaluated with \textsc{collier}

Real corrections and Monte Carlo integration

• all amplitudes from SM calculation via rescaling with factor $s_{\beta-\alpha}$
• IR singularities treated with dipole subtraction \cite{Catani:1996vz,Denner:1999gp,Denner:2008uj}
• multi-channel Monte Carlo integration within \textsc{prophecy4f}

Two independent calculations of all ingredients
NLO corrections to $h \rightarrow 4f$ in the THDM implemented in ...

A Monte Carlo generator for a
Proper description of the
Higgs decay into 4 fermions

Prophecy4f

Authors
Ansgar Denner
Stefan Dittmaier
Aleandar Mück

Universität Würzburg, Germany
Universität Freiburg, Germany
RWTH Aachen University, Germany

Former Authors
Axel Breidenstein
Marcus Weber

Prophecy4f is a Monte Carlo integrator for Higgs decays $H \rightarrow WW/ZZ \rightarrow 4$ fermions
It includes:
• all four-fermion final states
• NLO QCD and electroweak corrections
• all interferences at LO and NLO
• effects beyond NLO from heavy-Higgs effects
• alternatively an Improved Born Approximation (IBA) with leading effects of the corrections
• production of unweighted events for leptonic final states
• optional inclusion of a 4th fermion generation (w/ or w/o leading two-loop improvements)

← New PROPHECY4F version available on request (on hepforge soon)
Numerical results
Scale dependence of the $h \rightarrow 4f$ width in scenario A:

- Ren. scale dependence: reduction from LO \rightarrow NLO in all schemes
 Note: scale $\mu_r = M_h$ inappropriate

- Ren. scheme dependence: reduction from LO \rightarrow NLO
 Note: consistent parameter conversion mandatory!
$c_{\beta-\alpha}$ dependence of $h \to 4f$ width in scenario A:

\begin{align*}
\Gamma_{h \to 4f} \text{ [MeV]}:
\end{align*}

\begin{itemize}
 \item $\overline{\text{MS}}(\lambda_3)$ scheme used \quad \Rightarrow \quad \Gamma_{h \to 4f}^{\text{THDM,LO}} \bigg|_{\overline{\text{MS}}(\lambda_3)} = s_{\beta-\alpha}^2 \Gamma_{h \to 4f}^{\text{SM,LO}}$
 \item relative difference to SM: \quad \Delta_{\text{SM}} \lesssim 2\% (6\%) for $|c_{\beta-\alpha}| < 0.1 (0.2)$
\end{itemize}
Partial $h\to 4f$ widths in scenario Aa

<table>
<thead>
<tr>
<th>Final state</th>
<th>$\Gamma_{NLO}^{h\to 4f}$ [MeV]</th>
<th>δ_{EW} [%]</th>
<th>δ_{QCD} [%]</th>
<th>Δ_{SM}^{NLO} [%]</th>
<th>Δ_{SM}^{LO} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclusive $h\to 4f$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>0.96730(7)</td>
<td>2.71(0)</td>
<td>4.96(1)</td>
<td>−1.05(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>WW</td>
<td>0.106126(6)</td>
<td>0.34(0)</td>
<td>4.88(0)</td>
<td>−1.13(1)</td>
<td>−1.00(0)</td>
</tr>
<tr>
<td>WW/ZZ int.</td>
<td>0.86630(8)</td>
<td>3.00(0)</td>
<td>5.01(1)</td>
<td>−1.04(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu e^+\mu^-\bar{\nu}_\mu$</td>
<td>−0.00513(5)</td>
<td>1.3(2)</td>
<td>12.0(8)</td>
<td>−1(1)</td>
<td>−1(1)</td>
</tr>
<tr>
<td>$\nu e^+u\bar{d}$</td>
<td>0.010201(1)</td>
<td>3.03(0)</td>
<td>0.00</td>
<td>−1.04(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu e^-\bar{u}d\bar{c}$</td>
<td>0.031719(4)</td>
<td>3.02(0)</td>
<td>3.76(1)</td>
<td>−1.04(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu e^+e^-\bar{\nu}_e$</td>
<td>0.09847(2)</td>
<td>2.97(0)</td>
<td>7.52(1)</td>
<td>−1.04(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu e^-\bar{d}d\bar{u}$</td>
<td>0.010197(1)</td>
<td>3.12(0)</td>
<td>0.00</td>
<td>−1.04(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu e \nu_e \nu_\mu \bar{\nu}_\mu$</td>
<td>0.000949(0)</td>
<td>3.01(0)</td>
<td>0.00</td>
<td>−1.14(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$e^-e^+\mu^-\mu^+$</td>
<td>0.000239(0)</td>
<td>1.30(1)</td>
<td>0.00</td>
<td>−1.13(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu e \bar{e} \nu_e \mu^-$</td>
<td>0.000477(0)</td>
<td>2.45(1)</td>
<td>0.00</td>
<td>−1.13(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$e^-e^+e^-e^+$</td>
<td>0.000132(0)</td>
<td>1.12(1)</td>
<td>0.00</td>
<td>−1.12(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu e \bar{e}u\bar{u}$</td>
<td>0.001679(0)</td>
<td>0.60(1)</td>
<td>3.76(1)</td>
<td>−1.12(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu e \bar{e}d\bar{d}$</td>
<td>0.002177(1)</td>
<td>1.69(0)</td>
<td>3.76(1)</td>
<td>−1.12(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$e^-e^+u\bar{u}$</td>
<td>0.000845(0)</td>
<td>0.11(1)</td>
<td>3.76(1)</td>
<td>−1.12(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$e^-e^+d\bar{d}$</td>
<td>0.001088(0)</td>
<td>0.47(1)</td>
<td>3.76(1)</td>
<td>−1.12(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$u\bar{u}c\bar{c}$</td>
<td>0.002971(0)</td>
<td>−1.80(1)</td>
<td>7.51(1)</td>
<td>−1.11(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$d\bar{d}d\bar{d}$</td>
<td>0.002556(1)</td>
<td>−0.38(0)</td>
<td>4.38(2)</td>
<td>−1.21(3)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$d\bar{d}s\bar{s}$</td>
<td>0.004956(1)</td>
<td>−0.36(0)</td>
<td>7.51(1)</td>
<td>−1.12(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$u\bar{u}s\bar{s}$</td>
<td>0.003852(1)</td>
<td>−0.66(1)</td>
<td>7.51(1)</td>
<td>−1.11(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$u\bar{u}u\bar{u}$</td>
<td>0.001506(0)</td>
<td>−1.92(1)</td>
<td>4.06(3)</td>
<td>−1.24(4)</td>
<td>−1.00(1)</td>
</tr>
</tbody>
</table>
NLO corrections to leptonic distributions in scenario A

Altenkamp et al. ’17

\[\frac{d\Gamma}{dM_{\mu\mu}} \quad h \rightarrow \mu^- \mu^+ e^- e^+ \quad \text{SM} \]

\[\frac{d\Gamma}{d\phi} \left[\frac{10^{-7} \text{MeV}}{\text{deg}} \right] \quad h \rightarrow \mu^- \mu^+ e^- e^+ \quad \text{MS}(\lambda_3) \]

\[\delta_{\text{NLO}} \% \]

\[\delta_{\text{NLO}} \% \]

\[\frac{d\Gamma}{dM_{\mu\mu}} \quad h \rightarrow \mu^- \mu^+ e^- e^+ \]

\[\frac{d\Gamma}{d\phi} \left[\frac{10^{-7} \text{MeV}}{\text{deg}} \right] \quad h \rightarrow \mu^- \mu^+ e^- e^+ \]

\[\delta_{\text{NLO}} \% \]

\[\delta_{\text{NLO}} \% \]

\[\delta_{\text{THDM}} \approx \delta_{\text{SM}} + \text{const.} \]

mainly due to external \(hH \) mixing
Conclusions
NLO corrections in the THDM

in principle straightforward, but involves issues:

• choice of input parameters, which ones in $\overline{\text{MS}}$?
• gauge dependences, perturbative stability, etc.

\rightarrow several schemes proposed and applied in recent literature

$h \rightarrow WW/ZZ \rightarrow 4f$ at NLO in the THDM

• results presented for a low-mass scenario ($M_{H,A_0,H^+} \sim 300-460$ GeV)
 ◦ $|\text{THDM} - \text{SM}| \lesssim 5\%$ for viable THDM parameters $c_\beta - c_\alpha$
 ◦ significant reduction in ren. scale and scheme dependence for LO \rightarrow NLO
 ◦ no further distortion of distributions in SM \rightarrow THDM at NLO
 ◦ no sensitivity of $h \rightarrow 4f$ to the type of THDM

• results for large M_{H,A_0,H^+} in recent publication
 ◦ results generically similar
 ◦ but: pathologies for scenarios near exp. exclusion and theoretical bounds

\rightarrow study of ren. scale and scheme dependence crucial for solid predictions

Outlook:

• Similar studies recently carried out for a singlet extension of the SM
• Construction of “universally well-behaved” ren. schemes in progress
Backup slides
Yukawa couplings:

Avoid FCNC at tree level!

\rightarrow Couple each fermion flavour only to one Φ_n (\mathbb{Z}_2 symmetry)

$$\mathcal{L}_{\text{Yukawa}} = -\bar{L}'^L Y^l l'^R \Phi_{n_1} - \bar{Q}'^L Y^u u'^R \Phi_{n_2} - \bar{Q}'^L Y^d d'^R \Phi_{n_3} + h.c.$$
Generic diagrams for hh, hH, HH self-energies

\leftrightarrow external wave-function renormalization + hH mixing

$S = h, H, A_0, H^\pm, G_0, G^\pm$

Generic diagrams with internal heavy Higgs bosons H, A_0, H^\pm
Classification of QCD corrections

Possible Born diagrams:

(1) \[hVV \]
\[f_a \]
\[\bar{f}_b \]
\[V \]
\[f_c \]
\[\bar{f}_d \]

(2) \[hV'V' \]
\[f_a \]
\[\bar{f}_b \]
\[V' \]
\[f_c \]
\[\bar{f}_d \]

diagrams (2) only for \(f\bar{f}f\bar{f} \) and \(f\bar{f}f'\bar{f}' \) channels
\((f' = \) weak-isospin partner of \(f \))

Classification of QCD corrections into four categories: (typical diagrams shown)

(a)

(d) only QCD correction without universal scaling \(\propto s^{\beta - \alpha} \) from \(\mathcal{M}_{SM} \)

(b,c,d) = corrections to interferences (only for \(q\bar{q}q\bar{q} \) and \(q\bar{q}q'\bar{q}' \) channels)
Partial $h \to 4f$ widths in scenario Ab

Altenkamp et al. '17

<table>
<thead>
<tr>
<th>Final state</th>
<th>$\Gamma_{NLO}^{h\to4f}$ [MeV]</th>
<th>δ_{EW} [%]</th>
<th>δ_{QCD} [%]</th>
<th>Δ_{SM}^{NLO} [%]</th>
<th>Δ_{SM}^{LO} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclusive $h \to 4f$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>0.95980(7)</td>
<td>1.87(0)</td>
<td>4.97(1)</td>
<td>−1.82(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>WW</td>
<td>1.05546(5)</td>
<td>−0.34(0)</td>
<td>4.90(0)</td>
<td>−1.75(1)</td>
<td>−1.00(0)</td>
</tr>
<tr>
<td>WW/ZZ int.</td>
<td>0.85938(8)</td>
<td>2.14(0)</td>
<td>5.01(1)</td>
<td>−1.83(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e e^+\mu^-\bar{\nu}_\mu$</td>
<td>−0.00504(5)</td>
<td>0.5(1)</td>
<td>10.7(8)</td>
<td>−2(1)</td>
<td>−1(1)</td>
</tr>
<tr>
<td>$\nu_e e^+u\bar{d}$</td>
<td>0.010116(1)</td>
<td>2.17(1)</td>
<td>0.00</td>
<td>−1.87(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e e^-\nu_e$</td>
<td>0.031463(4)</td>
<td>2.16(0)</td>
<td>3.76(1)</td>
<td>−1.84(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e \bar{d}s\bar{c}$</td>
<td>0.09770(2)</td>
<td>2.11(0)</td>
<td>7.52(1)</td>
<td>−1.81(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e \bar{e}e^+\nu_e$</td>
<td>0.010112(1)</td>
<td>2.27(1)</td>
<td>0.00</td>
<td>−1.87(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e \bar{d}d\bar{u}$</td>
<td>0.09972(2)</td>
<td>1.99(0)</td>
<td>7.38(2)</td>
<td>−1.80(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e \bar{e}\nu_e\nu_e\bar{\nu}_\mu$</td>
<td>0.000943(0)</td>
<td>2.34(0)</td>
<td>0.00</td>
<td>−1.78(1)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$e^- e^+\mu^-\mu^+$</td>
<td>0.000237(0)</td>
<td>0.62(1)</td>
<td>0.00</td>
<td>−1.79(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e \bar{e}e\mu^-\mu^+$</td>
<td>0.000474(0)</td>
<td>1.78(1)</td>
<td>0.00</td>
<td>−1.78(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e \bar{e}\nu_e\nu_e\nu_e$</td>
<td>0.000565(0)</td>
<td>2.23(0)</td>
<td>0.00</td>
<td>−1.79(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$e^- e^+e^- e^+$</td>
<td>0.000131(0)</td>
<td>0.45(1)</td>
<td>0.00</td>
<td>−1.78(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e \bar{e}e\bar{u}\bar{u}$</td>
<td>0.001668(0)</td>
<td>−0.08(1)</td>
<td>3.76(1)</td>
<td>−1.76(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$\nu_e \bar{e}d\bar{d}$</td>
<td>0.002163(0)</td>
<td>1.02(0)</td>
<td>3.76(1)</td>
<td>−1.76(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$e^- e^+u\bar{u}$</td>
<td>0.000840(0)</td>
<td>−0.57(1)</td>
<td>3.76(1)</td>
<td>−1.77(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$e^- e^+d\bar{d}$</td>
<td>0.001081(0)</td>
<td>−0.21(1)</td>
<td>3.76(1)</td>
<td>−1.76(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$u\bar{u}c\bar{c}$</td>
<td>0.002952(0)</td>
<td>−2.48(1)</td>
<td>7.51(1)</td>
<td>−1.75(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$d\bar{d}d\bar{d}$</td>
<td>0.002545(1)</td>
<td>−1.06(0)</td>
<td>4.57(2)</td>
<td>−1.67(3)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$d\bar{d}s\bar{s}$</td>
<td>0.004925(1)</td>
<td>−1.04(0)</td>
<td>7.51(1)</td>
<td>−1.74(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$u\bar{u}s\bar{s}$</td>
<td>0.003828(1)</td>
<td>−1.35(1)</td>
<td>7.51(1)</td>
<td>−1.74(2)</td>
<td>−1.00(1)</td>
</tr>
<tr>
<td>$u\bar{u}u\bar{u}$</td>
<td>0.001500(0)</td>
<td>−2.60(1)</td>
<td>4.31(2)</td>
<td>−1.65(3)</td>
<td>−1.00(1)</td>
</tr>
</tbody>
</table>
Altenkamp et al. ’17

\[\frac{d\Gamma}{dM_{\nu\mu\mu}} \quad h \rightarrow \nu_\mu \mu^+ e^- \nu_e \]

\[\frac{d\Gamma}{d\phi_{\mu e, T}} \quad h \rightarrow \nu_\mu \mu^+ e^- \nu_e \]

\[\delta_{\text{NLO}} \quad [\%] \]

\[M_{\nu\mu\mu} \quad [\text{GeV}] \]

\[\phi_{\mu e, T} \quad [\text{deg}] \]

Correction \(\delta_{\text{THDM}} \approx \delta_{\text{SM}} + \text{const.} \)

mainly due to external \(hH \) mixing

\(\phi_{T, \mu e} = \angle(\mu, e) \) in a fixed plane \(\approx \) (plane \(\perp \) beams)
NLO corrections to semileptonic distributions in scenario A

Altenkamp et al. '17

\[\frac{d\Gamma}{dM_{qq}} \quad h \rightarrow \bar{d}d e^{-} e^{+} \]

\[\frac{d\Gamma}{d|\cos \phi|}[\text{MeV}] \quad h \rightarrow \bar{d}d e^{-} e^{+} \]

\[\text{MS}(\lambda_3) \]

\[\delta_{\text{NLO}} \% \]

\[\delta_{\text{NLO}} \% \]

\[M_{qq}[\text{GeV}] \]

\[| \cos \phi | \]
NLO corrections to semileptonic distributions in scenario A

\[
\frac{d\Gamma}{dM_{qq}} \quad h \rightarrow \nu_e e^+ d\bar{u}
\]

\[
\frac{d\Gamma}{d\cos \phi_{eW}} [\text{MeV}] \quad h \rightarrow \nu_e e^+ d\bar{u}
\]

\[
\delta_{NLO} [\%]
\]

\[
M_{qq}[\text{GeV}]
\]

\[
\cos \phi_{eW}
\]

Altenkamp et al. '17

\[\overline{\text{MS}}(\lambda_3)\]

Stefan Dittmaier, Precision calculations for \(h \rightarrow WW/ZZ \rightarrow 4f\) ... relationships.
Scale dependence of the $h \to 4f$ width in large-mass scenario B1:

$M_H = 600 \text{ GeV}, \quad M_{A_0} = M_{H^+} = 690 \text{ GeV}, \quad \lambda_5 = -1.9, \quad \tan\beta = 4.5$

Ren. scale and scheme dependence in LO → NLO:

- stabilization degrades when $\cos(\beta - \alpha)$ increases (getting away from the decoupling limit)

- good stability for $\overline{\text{MS}}(\alpha)$ and $\overline{\text{MS}}(\lambda_3)$ schemes

- FJ schemes degrade earlier due to large tadpole terms