Lattice studies of pseudo-PDFs

Savvas Zafeiropoulos
Universität Heidelberg

21.03.2018
Rencontres de Moriond 2018

In collaboration with J. Karpie (College of William & Mary), K. Orginos (College of William & Mary and JLAB), A. Radyushkin (ODU and JLAB)
Based on Phys.Rev. D96 (2017) no.9, 094503
Since the discovery of quarks in DIS experiments at SLAC, PDFs always occupied a key role in HEP.

- Large international effort aiming at their measurement
- Their measurement is actually possible due to factorization theorems
Since the discovery of quarks in DIS experiments at SLAC, PDFs always occupied a key role in HEP.

Large international effort aiming at their measurement.

Their measurement is actually possible due to factorization theorems.
Since the discovery of quarks in DIS experiments at SLAC, PDFs always occupied a key role in HEP.

Large international effort aiming at their measurement.

Their measurement is actually possible due to factorization theorems.
Intuitively, factorization theorems (Collins, Soper and Sterman (1989)) tell us that the same universal non-perturbative objects (the PDFs), representing long distance physics, can be combined with many short-distance calculations in QCD to give the cross-sections of various processes.

\[\sigma = f \otimes H, \text{ where } f \text{ are the PDFs, } H \text{ is the hard perturbative part and } \otimes \text{ is convolution.} \]

- PDFs truly characterize the hadronic target
- essentially non-perturbative
Intuitively, factorization theorems (Collins, Soper and Sterman (1989)) tell us that the same universal non-perturbative objects (the PDFs), representing long distance physics, can be combined with many short-distance calculations in QCD to give the cross-sections of various processes.

- \(\sigma = f \otimes H \), where \(f \) are the PDFs, \(H \) is the hard perturbative part and \(\otimes \) is convolution.

- PDFs truly characterize the hadronic target
 - essentially non-perturbative
Intuitively, factorization theorems (Collins, Soper and Sterman (1989)) tell us that the same universal non-perturbative objects (the PDFs), representing long distance physics, can be combined with many short-distance calculations in QCD to give the cross-sections of various processes.

- \(\sigma = f \otimes H \), where \(f \) are the PDFs, \(H \) is the hard perturbative part and \(\otimes \) is convolution.
- PDFs truly characterize the hadronic target
- essentially non-perturbative
The only ab-initio method to study QCD non-perturbatively is on the lattice. But ...

- PDFs are defined as an expectation value of a bilocal operator evaluated along a light-like line.
- Clearly, we can not evaluate this on a Euclidean set-up.
The only ab-initio method to study QCD non-perturbatively is on the lattice. But ...

PDFs are defined as an expectation value of a bilocal operator evaluated along a light-like line.

Clearly, we can not evaluate this on a Euclidean set-up.
- The only ab-initio method to study QCD non-perturbatively is on the lattice. But ...
- PDFs are defined as an expectation value of a bilocal operator evaluated along a light-like line.
- Clearly, we can not evaluate this on a Euclidean set-up.
Lattice traditionally

- Calculation of Mellin moments of PDFs through matrix elements of twist−2 operators.
- Would not be an issue if every moment were accessible because a probability distribution is completely determined once all its moments are known.
- These studies are limited to the first few (three) moments due to
 - bad signal to noise ratio
 - power-divergent mixing on the lattice (discretized space-time does not possess the full rotational symmetry of the continuum).
Global PDF fits

- Realize a QCD analysis of hard-scattering measurements employing a variety of hadronic observables.
- Parton densities parametrized @ an initial energy scale evolved up to the scale of data via DGLAP eqs.
- Build theoretical predictions for the observables.
- Best fit parameters determined by the minimization of an appropriate figure of merit (eg. χ^2).
- Many free parameters
- Advanced techniques (eg. use of neural networks).
Light-like is a NO-GO

Computing PDFs in LQCD we start from the equal time hadronic matrix element with the quark and anti-quark fields separated by a finite distance. For non-singlet parton densities the matrix element

\[M^\alpha(z, p) \equiv \langle p | \bar{\psi}(0) \gamma^\alpha \hat{E}(0, z; A) \tau_3 \psi(z) | p \rangle \]

where \(\hat{E}(0, z; A) \) is the \(0 \rightarrow z \) straight-line gauge link in the fundamental representation, \(\tau_3 \) is the flavor Pauli matrix, and \(\gamma^\alpha \) is a gamma matrix. We can decompose the matrix element due to Lorentz invariance as

\[M^\alpha(z, p) = 2p^\alpha M_p(-(zp), -z^2) + z^\alpha M_z(-(zp), -z^2) \]
From the $\mathcal{M}_p(-(zp), -z^2)$ part the twist-2 contribution to PDFs can be obtained in the limit $z^2 \to 0$.

By taking $z = (0, 0, 0, z_3)$, α in the temporal direction i.e. $\alpha = 0$, and the hadron momentum $p = (p^0, 0, 0, p)$ the z^α-part drops out.

The Lorentz invariant quantity $\nu = -(zp)$, is the "Ioffe time" (B. L. Ioffe, Phys. Lett. 30B, 123 (1969))

and \[\langle p | \bar{\psi}(0) \gamma^0 \hat{E}(0, z; A)\tau_3 \psi(z) | p \rangle = 2p^0 \mathcal{M}_p(\nu, z_3^2) \]
Formalism

- the quasi-PDF $Q(x, p^2)$ is related to $M_p(\nu, z_3^2)$ by

$$Q(x, p^2) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \ e^{-ix\nu} \ M_p(\nu, [\nu/p]^2)$$

Quasi PDF mixes invariant scales until p_z is effectively large enough

- while the pseudo-PDF

$$P(x, z_0^2) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \ e^{-i\nu\nu} \ M_p(\nu, z_0^2)$$

Pseudo PDF has fixed invariant scale dependence
loffe time PDFs $\mathcal{M}(\nu, z_3^2)$ defined at a scale $\mu^2 = 1/z_3^2$ are the Fourier transform of regular PDFs $f(x, \mu^2)$. (I.I. Balitsky and V.M. Braun, Nucl. Phys. B311, 541 (1988), V. Braun, et. al Phys. Rev. D 51, 6036 (1995))

$$\mathcal{M}(\nu, z_3^2) = \int_{-1}^{1} dx f(x, 1/z_3^2) e^{ix\nu}$$

Scale dependence of the loffe time PDF derived from the DGLAP evolution of the regular PDFs.

Ioffe time PDFs evolution equation

$$\frac{d}{d \ln z_3^2} \mathcal{M}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \int_0^1 du B(u) \mathcal{M}(u\nu, z_3^2)$$

with $B(u) = \left[\frac{1+u^2}{1-u}\right]_+$, $C_F = 4/3$, and $B(u)$ is the LO evolution kernel for the non-singlet quark PDF. (V. Braun, et. al Phys. Rev. D 51, 6036 (1995))
\[z_3 \ll \rightarrow M_p(\nu, z_3^2) = M(\nu, z_3^2) + O(z_3^2) \]

But.... large \(O(z_3^2) \) corrections prohibit the extraction.

Conservation of the vector current implies \(M_p(0, z_3^2) = 1 + O(z_3^2) \).

but in a ratio \(z_3^2 \) corrections (related to the transverse structure of the hadron) might cancel (A. Radyushkin Phys.Lett. B767 (2017))

\[M(\nu, z_3^2) \equiv \frac{M_p(\nu, z_3^2)}{M_p(0, z_3^2)} \]

- much smaller \(O(z_3^2) \) corrections and therefore this ratio could be used to extract the Ioffe time PDFs

- a well defined continuum limit and does not require renormalization
First case study in an unphysical setup

- Quenched approximation
- $32^3 \times 64$ lattices with $a = 0.093\text{fm}$.
- $m_\pi = 601\text{MeV}$ and $m_N = 1411\text{MeV}$

Now employing dynamical ensembles (preliminary)

<table>
<thead>
<tr>
<th>a(fm)</th>
<th>M_π(MeV)</th>
<th>β</th>
<th>$L^3 \times T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.127(2)</td>
<td>440</td>
<td>6.1</td>
<td>$24^3 \times 64$</td>
</tr>
<tr>
<td>0.127(2)</td>
<td>440</td>
<td>6.1</td>
<td>$32^3 \times 96$</td>
</tr>
<tr>
<td>0.094(1)</td>
<td>280</td>
<td>6.3</td>
<td>$32^3 \times 64$</td>
</tr>
</tbody>
</table>

Table: Parameters for the lattices generated by the JLab/W&M collaboration using 2+1 flavors of clover Wilson fermions and a tree-level tadpole-improved Symanzik gauge action. The lattice spacings, a, are estimated using the Wilson flow scale w_0. Stout smearing implemented in the fermion action makes the tadpole corrected tree-level clover coefficient c_{SW} used, to be very close to the value determined non-pertubatively with the Schrödinger functional method.
Following, C. Bouchard et al. Phys. Rev. D 96, no. 1, 014504 (2017) we compute a regular nucleon two point function

\[C_p(t) = \langle N_p(t)\overline{N}_p(0) \rangle, \]

and

\[C_p^{O^0(z)}(t) = \sum_{\tau} \langle N_p(t)O^0(z, \tau)\overline{N}_p(0) \rangle \]

with

\[O^0(z, t) = \overline{\psi}(0, t)\gamma^0\tau_3\hat{E}(0, z; A)\psi(z, t) \]

Proton momentum and displacement of the quark fields along the \(\hat{z} \) axis

\[M_{\text{eff}}(z_3p, \frac{z_2}{2p^0}; t) = \frac{C_p^{O^0(z)}(t + 1)}{C_p(t + 1)} - \frac{C_p^{O^0(z)}(t)}{C_p(t)} \]

Extract the desired m. e. \(J \) at large Euclidean time separation as

\[\frac{J(z_3p, \frac{z_2}{2p^0})}{2p^0} = \lim_{t \to \infty} M_{\text{eff}}(z_3p, \frac{z_2}{2}; t) \]

where \(p^0 \) is the energy of the nucleon.
Numerical implementation

- Renormalization of the m.e.?

- For $z_3 = 0$ $\mathcal{M}(z_3 p, z_3^2) \rightarrow$ the local iso-vector current, should be $= 1$ (but ...) lattice artifacts...

- Introduce an RC $Z_p = \frac{1}{\mathcal{J}(z_3 p, z_3^2)|_{z_3=0}}$

- Z_p has to be independent from p. But lattice artifacts or potential fitting systematics ...

- renormalize the m. e. for each momentum with its own $Z_p \rightarrow$ maximal statistical correlations to reduce statistical errors, and cancellation of lattice artifacts in the ratio
■ Renormalization of the m.e.?

■ For $z_3 = 0 \mathcal{M}(z_3 p, z_3^2) \to$ the local iso-vector current, should be $= 1$ (but ...) lattice artifacts...

■ Introduce an RC $Z_p = \frac{1}{\mathcal{J}(z_3 p, z_3^2)|_{z_3=0}}$

■ Z_p has to be independent from p. But lattice artifacts or potential fitting systematics ...

■ renormalize the m. e. for each momentum with its own $Z_p \to$ maximal statistical correlations to reduce statistical errors, and cancellation of lattice artifacts in the ratio
Numerical implementation

- Renormalization of the m.e.?
- For $z_3 = 0 \ M(z_3 p, z_3^2) \to$ the local iso-vector current, should be $= 1$ (but ...) lattice artifacts...
- Introduce an RC $Z_p = \frac{1}{\mathcal{J}(z_3 p, z_3^2)|_{z_3=0}}$.
- Z_p has to be independent from p. But lattice artifacts or potential fitting systematics ...
- renormalize the m. e. for each momentum with its own $Z_p \to$ maximal statistical correlations to reduce statistical errors, and cancellation of lattice artifacts in the ratio.
Numerical implementation

- Renormalization of the m.e.?
- For $z_3 = 0 \mathcal{M}(z_3 p, z_3^2) \rightarrow$ the local iso-vector current, should be = 1 (but ...) lattice artifacts...
- Introduce an RC $Z_p = \frac{1}{\mathcal{J}(z_3 p, z_3^2)|_{z_3=0}}$
- Z_p has to be independent from p. But lattice artifacts or potential fitting systematics ...

- renormalize the m. e. for each momentum with its own $Z_p \rightarrow$ maximal statistical correlations to reduce statistical errors, and cancellation of lattice artifacts in the ratio
Numerical implementation

- Renormalization of the m.e.?
- For $z_3 = 0$ $\mathcal{M}(z_3 p, z_3^2) \rightarrow$ the local iso-vector current, should be $= 1$ (but ...) lattice artifacts...
- Introduce an RC $Z_p = \frac{1}{\mathcal{J}(z_3 p, z_3^2)|_{z_3=0}}$
- Z_p has to be independent from p. But lattice artifacts or potential fitting systematics ...
- renormalize the m. e. for each momentum with its own $Z_p \rightarrow$ maximal statistical correlations to reduce statistical errors, and cancellation of lattice artifacts in the ratio
Numerical implementation

- in practise use the double ratio

\[
M(\nu, z_3^2) = \lim_{t \to \infty} \frac{M_{\text{eff}}(z_3 p, z_3^2; t)}{M_{\text{eff}}(z_3 p, z_3^2; t)|_{z_3=0}} \times \frac{M_{\text{eff}}(z_3 p, z_3^2; t)|_{p=0, z_3=0}}{M_{\text{eff}}(z_3 p, z_3^2; t)|_{p=0}},
\]

- infinite \(t \) limit is obtained with a fit to a constant for a suitable choice of a fitting range.
in practise use the double ratio

\[M(\nu, z_3^2) = \lim_{t \to \infty} \frac{M_{\text{eff}}(z_3 p, z_3^2; t)}{M_{\text{eff}}(z_3 p, z_3^2; t)|_{z_3=0}} \times \frac{M_{\text{eff}}(z_3 p, z_3^2; t)|_{p=0, z_3=0}}{M_{\text{eff}}(z_3 p, z_3^2; t)|_{p=0}}, \]

infinite \(t \) limit is obtained with a fit to a constant for a suitable choice of a fitting range.
Nucleon dispersion relation. Energies and momenta are in lattice units. The solid line is the continuum dispersion relation (not a fit) while the errorband is an indication of the statistical error of the lattice nucleon energies.
Typical fits used to extract the reduced matrix element (here \(p = 2\pi/L \cdot 2 \) and \(z = 4 \) (LHS) and \(p = 2\pi/L \cdot 3 \) and \(z = 8 \) (RHS)). The average \(\chi^2 \) per degree of freedom was \(\mathcal{O}(1) \). All fits are performed with the full covariance matrix and the error bars are determined with the jackknife method.
Re and Im parts of $M(\nu, z_3^2)$. Curves plotted for comparison, given by Re and Im Fourier trasfos of $q_v(x) = \frac{315}{32} \sqrt{x}(1 - x)^3$. The data are approximately described by the same curve. This phenomenon can be understood if an approximate factorization of the longitudinal and transverse structure of the hadron occurs.
Residual z_3-dependence

- Data plotted as a function of the Ioffe time we can see that there is a residual z_3-dependence.

- This is more visible when, for a particular $\nu \rightarrow$ several data points corresponding to different values of z_3.

- Different values of z_3^2 for the same ν correspond to the loffe time distribution at different scales.
Residual z_3-dependence

- Data plotted as a function of the Ioffe time we can see that there is a residual z_3-dependence.
- This is more visible when, for a particular $\nu \rightarrow$ several data points corresponding to different values of z_3.
- Different values of z_3^2 for the same ν correspond to the Ioffe time distribution at different scales.
Residual z_3-dependence

- Data plotted as a function of the Ioffe time we can see that there is a residual z_3-dependence.
- This is more visible when, for a particular $\nu \rightarrow$ several data points corresponding to different values of z_3.
- Different values of z_3^2 for the same ν correspond to the Ioffe time distribution at different scales.
Residual z_3-dependence

- Is the residual scatter in the data points consistent with evolution? By solving the evolution equation at LO, the Ioffe time PDF at z'_3 is related to the one at z_3 by

$$M(\nu, z'^2_3) = M(\nu, z^2_3) - \frac{2}{3} \frac{\alpha_s}{\pi} \ln\left(\frac{z'^2_3}{z^2_3}\right) \int_0^1 du B(u) M(u\nu, z^2_3)$$

- only applicable at small z_3

- Check its effect using data at values of $z_3 \leq 4a$ corresponding to energy scales larger than 500 MeV.

- We fix the point z'_3 at the value $z_0 = 2a$ corresponding, at leading logarithm level, to the \overline{MS}-scheme scale $\mu_0 = 1$ GeV and evolve the rest of the points to that scale.
Is the residual scatter in the data points consistent with evolution? By solving the evolution equation at LO, the Ioffe time PDF at z_3' is related to the one at z_3 by

$$M(\nu, z_3') = M(\nu, z_3) - \frac{2}{3} \frac{\alpha_s}{\pi} \ln\left(\frac{z_3'^2}{z_3^2}\right) \int_0^1 du \, B(u) \, M(\nu, u z_3^2)$$

- only applicable at small z_3
- Check its effect using data at values of $z_3 \leq 4a$ corresponding to energy scales larger than 500 MeV.
- We fix the point z_3' at the value $z_0 = 2a$ corresponding, at leading logarithm level, to the \overline{MS}-scheme scale $\mu_0 = 1$ GeV and evolve the rest of the points to that scale.
Residual z_3-dependence

- Is the residual scatter in the data points consistent with evolution? By solving the evolution equation at LO, the Ioffe time PDF at z'_3 is related to the one at z_3 by

$$M(\nu, z'^2_3) = M(\nu, z^2_3) - \frac{2}{3} \frac{\alpha_s}{\pi} \ln(z'^2_3/z^2_3) \int_0^1 du B(u) M(u\nu, z^2_3)$$

- Only applicable at small z_3

- Check its effect using data at values of $z_3 \leq 4a$ corresponding to energy scales larger than 500 MeV.

- We fix the point z'_3 at the value $z_0 = 2a$ corresponding, at leading logarithm level, to the \overline{MS}-scheme scale $\mu_0 = 1$ GeV and evolve the rest of the points to that scale.
Before and after evolution

The ratio $\mathcal{M}(\nu, z_3^2)$ for $z_3/a = 1, 2, 3, \text{ and } 4$. **LHS:** Data before evolution. **RHS:** Data after evolution. The reduction in scatter indicates that evolution collapses all data to the same universal curve.
Before and after evolution

The ratio $\mathcal{M}(\nu, z_3^2)$ for $z_3/a = 1, 2, 3, \text{ and } 4$. **LHS:** Data before evolution. **RHS:** Data after evolution. The reduction in scatter indicates that evolution collapses all data to the same universal curve.
More on evolution

- LO evolution cannot be extended to very low scales.
- It is known that evolution stops below a certain scale (by observing our data we infer that this is the case for $z_3 \geq 6a$.)
- Adopt an evolution that leaves the PDF unchanged for length scales above $z_3 = 6a$ and use the leading perturbative evolution formula to evolve to smaller z_3 scales.
LO evolution cannot be extended to very low scales.

It is known that evolution stops below a certain scale (by observing our data we infer that this is the case for $z_3 \geq 6a$.

Adopt an evolution that leaves the PDF unchanged for length scales above $z_3 = 6a$ and use the leading perturbative evolution formula to evolve to smaller z_3 scales.
Comparison to global fits

LHS: Data points for $\text{Re} \tilde{M}(\nu, z_0^2)$ with $z_3 \leq 10a$ evolved to $z_3 = 2a$. By fitting these evolved points with a cosine FT of $q_\nu(x) = N(a, b)x^a(1-x)^b$ we obtain $a = 0.36(6)$ and $b = 3.95(22)$ (statistical errors). RHS: Curve for $u_\nu(x) - d_\nu(x)$ built from the evolved data shown in the left panel and treated as corresponding to the $\mu^2 = 1 \text{ GeV}^2$ scale; then evolved to the reference point $\mu^2 = 4 \text{ GeV}^2$ of the global fits. 1-loop matching to $\overline{\text{MS}}$ still to be done on our data.

A. Radyushkin 1710.08813, Zhang et al 1801.03023, Izubuchi et al 1801.03917
Conclusions and outlook

- We presented a new approach for obtaining PDFs from lattice QCD calculations.
- Using an appropriate ratio of matrix elements we were able to get rid of UV divergences ensuring a well defined continuum limit.
- One can scan in Ioffe time ν which is the Fourier dual to the momentum fraction x by using the hadron momentum.
- Large hadron momentum required to access the large ν-regime or equivalently small-x physics.
- To approach the light cone we need to send $z_3^2 \rightarrow 0$ keeping ν fixed.
Conclusions and outlook

- The pseudo-PDF ratio lead to suppression of scaling violations in z_3^2.

- The logarithmic singularity $(\ln(-z_3^2))$ of $\mathcal{M}(\nu, z_3^2)$ lead to DGLAP evolution.

- The observed z^2 dependence is compatible with DGLAP evolution.

- Soon we will be finalizing our results with $2 + 1$ dynamical flavors of Wilson clover fermions which will include a more detailed study of all involved systematics (discretization effects, finite-volume effects, lighter pions etc).
Stay Tuned!

for upcoming results . . .

Thanks a lot for your attention!!!