Search for dark photons at NA62

Marco Mirra

Università degli studi di Napoli Federico II and Sezione INFN Napoli

on behalf of NA62 collaboration

Rencontres de Moriond QCD and High Energy Interactions

21 March 2018, La Thuile, Italia
Hidden sector motivations

If DM is a thermal relic from hot early universe, can hunt for it in particle-physics: **search for non-gravitational interactions DM-SM**

A mediator of a hidden sector might exist, inducing DM-SM field (feeble) interactions; many possible dynamics: vector (A' dark photon), neutrino (HNL), axial (ALP a), scalar..

Various experimental hints for hidden sector at MeV-GeV, e.g., a_μ 3.5-σ discrepancy:

![Diagram of a dark photon A'](#)

...or to an ALP a enhancing light-by-light?

![Diagram of an ALP a](#)

Feeble interaction: ultra-suppressed production rate, very long-lived states.

E.g.: 1-GeV mass HNL, $\tau \sim 10^{-5}$-10^{-2} s, decay length ~ 10-10000 Km at SPS energies, suppression at production 10^{-7}-10^{-10}
Kaon physics at CERN:
✓ Fixed target experiments at CERN SPS
✓ Kaon decay-in-flight

Currently in NA62:
~200 participants
29 institutions from 13 countries

Main goal:
$BR(K^+ \to \pi^+ \nu \bar{\nu})$ measurement with $\mathcal{O}(10\%)$ precision

SM prediction:
$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$

Experimental status (E787, E949):
$BR(K^+ \to \pi^+ \nu \bar{\nu}) = \left(17.3^{+11.5}_{-10.5}\right) \times 10^{-11}$

SPS protons:
400 GeV/c
10^{12} Proton on target (PoT)/sec on spill
3.5 sec spill
SPS protons:
400 GeV/c
10^{12} PoT/sec on spill
3.5 sec spill

Secondary beam:
75 GeV/c, 1% bite
100 μrad
60×30 mm2
$K^+(6\%)/\pi^+(70\%)/p(24\%)$
750 MHz at GTK3
NA62 layout

[NA62 Detector Paper, JINST 12 (2017), P05025]

SPS protons:
- 400 GeV/c
- 10^{12} PoT/sec on spill
- 3.5 sec spill

Secondary beam:
- 75 GeV/c, 1% bite
- 100 µrad
- 60×30 mm2
- $K^+ (6\%) / \pi^+ (70\%) / p(24\%)$
- 750 MHz at GTK3

Kaon decay region:
- 60 m
- ~ 5 MHz
- $\mathcal{O}(10^{-6})$ mbar
Performances

✓ Excellent time resolution $\mathcal{O}(100 \text{ ps})$ to match beam and daughter particle information
✓ Kinematics: rejection of main K modes 10^4 via kinematics reconstruction
✓ PID capability: μ vs π rejection of $O(10^7)$ for $15 < p(\pi^+) < 35 \text{ GeV}$
✓ High-efficiency veto: 10^8 rejection of π^0 for $E(\pi^0) > 40 \text{ GeV}$
NA62 timescale for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Run in 2014: pilot run
Run in 2015: commissioning run
 • commissioning of L0 trigger
 • run up to nominal intensity,
 • 33×10^{11} PoT/spill, 3.5 s effective-length spill
Run in 2016: detector commissioning + physics run
 • L1 trigger/detector final commissioning
 • stable run at 40% of the nominal beam intensity
Run in 2017-2018: physics run
 • improve on present state of the art (BNL measurement) collecting ~ 20 SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events before LS2

Current run

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ physics program
NA62 physics besides $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Such high-intensity, high-performance setup as NA62 might be suited for these NP searches:

- Lepton flavour violation (LFV) and lepton number violation (LNV) studies
- ultra-rare/forbidden π^0 decays
- chiral perturbation theory studies from kaon decays
- search for exotic states

Trigger bandwidth for final states other than “$\pi^+ + E_{\text{miss}}$” (used for the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$) limited. Some LFV/LNV studies can be performed because involve low-bandwidth trigger

- 3 daughter tracks at SES $\sim 10^{-11}$: $K^+ \rightarrow \pi^+ \mu^\pm e^\mp, \ K^+ \rightarrow \pi^- \mu^+ e^+, \ K^+ \rightarrow \pi^- e^+ e^+, \ K^+ \rightarrow \pi^\pm \mu^\mp \mu^+$

others because can be made in parasitic mode with the main trigger:

- search for heavy neutral leptons in $K^+ \rightarrow \mu^+ \nu_h, \ K^+ \rightarrow e^+ \nu_h$
- search for $\pi^0 \rightarrow \text{invisible}$, NA62 sensitive at 10^{-8}, search for $\pi^0 \rightarrow A' \gamma$
Several production modes / signals of A' can be studied at NA62

- Search for invisible decays (production in fiducial volume, missing mass signals):
 - From K^+ beam: for $K^+ \rightarrow \pi^+ A'$, by product of $K^+ \rightarrow \pi^+ \nu \nu$ [Marciano et al. PRD 892014]
 - From K^+ decay daughters: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow A' \gamma$

Rate scales with square of coupling

Up with intensity, if no background limited, improve from above
Several production modes / signals of A' can be studied at NA62

- Search for visible decays to SM particles (production at target/dump)
 Production from primary beam secondaries: $pN \rightarrow X\pi^0, \pi^0 \rightarrow A'\gamma, A' \rightarrow l^+l^-$
 Production from primary beam: $pN \rightarrow XA', A' \rightarrow l^+l^-$

Rate scales with 4th power of coupling

Sensitivity region shape depends on:
- minimum distance from production point to decay volume (upper curve)
- decay volume acceptance (lower curve)

Up with intensity, if no background limited, improve from below
NA62 in dump mode

A rich field to be explored with minimal upgrades to the present setup: run in “beam-dump” mode with NP searches for MeV-GeV mass hidden-sector candidates like Dark photons, Heavy neutral leptons (HNL), Axions/ALP, etc.

Compact beam dump: ~ 11 λ₁ Cu-based beam-defining collimator (TAX)

High-intensity 400-GeV proton beam: boost charm/beauty, other meson production

10^{18} PoT / nominal year: 10^{12} PoT/sec on spill, 100 days/year, 60% run efficiency

10^{15} D$_{(S)}$, 10^{14} K, 10^{18} $\pi^0/\eta/\eta'/\Phi/\rho/\omega$ with ratios 6.4/0.68/0.07/0.03/0.94/0.95
NA62 Run3 plan under discussion

- If needed, run for refining $K^+ \to \pi^+ \nu \nu$

- Present setup for K^+ beam + dedicated triggers: LFV/LNV sensitivity studies based:
 $K^+ \to \pi^+ \mu^\pm e^\mp$, $K^+ \to \pi^- \mu^+ e^+$, $K^+ \to \pi^- e^+ e^+$, $K^+ \to \pi^- \mu^+ \mu^+$ (+ rad. modes)
 $\pi^0 \to \mu e, 3\gamma, 4\gamma, ee, eee$

- 10^{18} POT in run in “beam-dump” mode, new program of NP searches for MeV-GeV mass hidden-sector candidates: Dark photons, Heavy neutral leptons, Axions/ALP’s, etc.

Current run

LS2

Run 3

LS2

NA62: $K^+ \to \pi^+ \nu \nu$, LNV/LFV decays, hidden sector searches in K decays

LFV/LNV @ ultimate sensitivity, hidden sector searches (beam dump)
NA62 2016 data: dark photon from π^0 decay

Decay chain: $K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow A'\gamma, A' \rightarrow invisible$

- **Signature:**
 - 1 photon + missing energy

- **Selection:**
 - π^+ as in $K^+ \rightarrow \pi^+\nu\bar{\nu}$
 - $15<p_{\pi^+}<35$ GeV/c
 - 1 γ in LKr
 - Missing momentum in LKr
 - Extra γ veto

- **Background:**
 - Negative tail of M_{miss}^2

- **Normalization:**
 - $K^+ \rightarrow \pi^+\pi^0$ from minimum bias

$M_{miss}^2 = (P_K - P_{\pi} - P_\gamma)^2$

Data control trigger: 2 γ on LKr, simulate 1 γ loss

MC:
- $m_{A'} = 60$ MeV
- $m_{A'} = 90$ MeV
- $m_{A'} = 120$ MeV

M_{miss}^2 (GeV2)

21/03/2018 M. Mirra

Search for dark photons at NA62
NA62 2016 data: dark photon from π^0 decay

- Limits observed are statistically compatible with fluctuations from the background-only hypothesis.
- NA62 limits in an interesting region; $#K$ decays $\sim 1.5 \times 10^{10}$ (4% 2016 statistics) used.

Limit if $N_{\text{obs}} = N_{\text{bkg}}$

Limit found
- 1-s limit band
- 2-s limit band

$M_{A'}$ (MeV)

$M_{A'}$ (GeV)

Search for dark photons at NA62
Search for visible decays of long-lived A'

Assume 10^{18} 400-GeV PoT:

- A' produced (meson decays, bremsstrahlung) from interaction into target
- search for displaced, dilepton decays of dark photons, $A' \rightarrow \mu\mu, ee$
- include trigger/acceptance/selection efficiency
- assume zero-background, evaluate expected 90%-CL exclusion plot

Sensitivity expected to be even higher including direct QCD production of A' and production in the dump (only target considered here)

3×10^{17} PoT acquired in 2016/17 with di-muon parasitic trigger, 5×10^{16} PoT with ee trigger
Zero background assumption: 2016 data

Statistics corresponds to $\sim 10^{15}$ PoT, search for $A' \to \mu\mu$

Track quality + acceptance cuts: forward detectors, CHOD, LKr, MUV3 associated to CHOD, LKr hits in time

Vertex quality: two-track distance < 1 cm

Vertex position: $105 < Z < 165$ m

Test if total momentum $P_{tot} = P_\mu + P_\mu$ stems from target

Background from K, π decays concentrated around beam after final collimator

Impact parameter of P_{tot} to beam line [cm]

Z of closest approach of P_{tot} to beam line [m]

Signal region

All two tracks vertices

NA62
Preliminary

21/03/2018 M. Mirra

Search for dark photons at NA62
Zero background assumption: 2016 data

Statistics corresponds to \(\sim 10^{15} \) PoT, search for \(A' \rightarrow \mu\mu \)

Track quality + acceptance cuts: forward detectors, CHOD, LKr, MUV3 associated to CHOD, LKr hits in time

Vertex quality: two-track distance < 1 cm

Vertex position: \(105 < Z < 165 \) m

Test if total momentum stems from target

Further event-level veto conditions:
- Additional energy in the LKr < 2 GeV
- Veto on forward / large angle calorimeters
- Veto on charged anti counter

No events selected in the signal region (even with standard \(K^+ \) beam)
Heavy neutrino invisible decay: 2015 data

New result released in 2018 from minimum bias data equivalent to $3 \times 10^8 K^+$ decays analyzed in $K^+ \rightarrow e^+ \nu$ search and to $1 \times 10^8 K^+$ decays analyzed in the $K^+ \rightarrow \mu^+ \nu$ search [NA62 coll. PL B778 137 (2018)]

Squared missing mass: $(P_K - P_e)^2$ [GeV2]

No heavy neutrino signal observed; improvement on $|U_{e4}|^2$ and $|U_{\mu4}|^2$

Major improvements with NA62 2016-2018 higher intensity data sets and fully operational beam tracker

Squared missing mass: $(P_K - P_\mu)^2$ [GeV2]

UL on $|U_{44}|^2$ at 90% CL

HNL mass [MeV]

21/03/2018 M. Mirra
Search for dark photons at NA62
Conclusions

- NA62 is officially approved to run until LS2 with the main goal of collecting ~ 20 SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events before LS2.
- Before LS2 (2018) many searches in the hidden sector will be performed using the kaon beam (new limits on dark photon already investigated).

- After LS2 (2020++) there is a window of opportunity to run NA62 in beam-dump mode to search for hidden particles from charm and beauty decays and pave the way for the next generation experiments.
- The current NA62 run can be exploited to evaluate background rejection capability up to $\sim 10^{17}-10^{18}$ POT. Preliminary studies with data taken in beam and beam-dump modes show that the background can be kept under control, further improvements in the setup are currently under study.
Search for visible decays of HNL

Assume 10^{18} 400-GeV PoT:

- search for displaced, leptonic decays $HNL \rightarrow \pi e, \pi \mu$, HNL production at the TAX
- include trigger/acceptance/selection efficiency
- separately address 3 extreme coupling scenarios [Shaposhnikov, Gorbunov arXiv:0705.1729v2]
- assume zero-background, evaluate expected 90%-CL exclusion plot

$U^2_e : U^2_\mu : U^2_\tau = 52:1:1$

Normal hierarchy of active ν masses

$U^2_e : U^2_\mu : U^2_\tau = 1:16:3.8$

Normal hierarchy of active ν masses

$U^2_e : U^2_\mu : U^2_\tau = 0.061:1:4.3$

Normal hierarchy of active ν masses

10^{18} PoT acquired in 2016/17 with $\mu \pi$ parasitic trigger, few 10^{16} PoT with $e \pi$ trigger
Search for visible decays of ALP

Assume 10^{18} 400-GeV PoT:

- study ALP Primakoff production [JHEP 1602 (2016) 018] at target
- search for ALP-decay to $\gamma\gamma$ in NA62 fiducial volume, account for geometrical acceptance
- assume zero-background, evaluate expected 90%-CL exclusion plot

Improvements expected already with 1 day of run (1.3×10^{16} POT)
Analysis of 2017 data for $\sim 5 \times 10^{15}$ PoT taken in dump mode in progress