Recent results from the EDELWEISS-III Dark Matter search

52nd Moriond Conference, 19.03.2017 – 24.03.2017
Very High Energy Phenomena in the Universe

Bernhard Siebenborn
Direct search for Dark Matter

- **Ionization**
 - Ge, CF$_3$I, C$_3$F$_9$
 - 10% energy

- **Heat**
 - Al$_2$O$_3$, LiF
 - 100% energy
 - Slowest
 - Cryogenics

- **Light**
 - NaI, liq.Xe
 - 1% energy
 - Fastest
 - No surface effects

- **Target**
Direct search for Dark Matter

CoGeNT, CDEX, PICO

DAMIC

Ge, CF$_3$I, C$_3$F$_9$

10% energy

Ionization

DarkSide, DEAP-3600

liquid Xe/Ar

LUX, PandaX-II, XENON100, XENON1T

Nal, liqu.Xe

DAMA/LIBRA, DM-Ice, ANAIS, KIMS, SABRE

CDMSlite

Ge, Si

EDELWEISS, SuperCDMS

Heat

Al$_2$O$_3$, LiF

CRESST-1

100% energy slowest cryogenics

CRESST

Target

Light

1% energy fastest no surface effects

CaWO$_4$, BGO
Liquid noble gas vs. cryogenic bolometers

Cryogenic detectors
low thresh, high energy resolution

Liquid noble gas:
- target mass, low bgd

Billard, Strigari, Figueroa-Feliciano
PRD 89 (2014)
Muon intensity, $m^{-2}\text{sr}^{-1}\text{y}^{-1}$

Depth, meters water equivalent

5 μ/m2/day

4800 mwe (deepest in Europe)
EDELWEISS-III FID800 detectors

\[\Delta T \sim E_{\text{heat}} = E_{\text{recoil}} + E_{\text{NTL}} \]

\[T_{\text{op}} = 18 \text{mK} \]

additional heat by drifting charges (Neganov-Trofimov-Luke effect):

\[E_{\text{NTL}} = N \cdot e \cdot U \]

Ø=70mm, h=40mm 2 GeNTDs heat sensors

Electrodes: concentric Al rings

XeF\(_2\) surface treatment: to ensure low leakage current (<1 fA) between adjacent electrodes

JLTP(2014)176:182
EDELWEISS FID800 detectors

Fully InterDigitized ~870g HPGe detectors

- Bulk/Fiducial event: Signal on C_{top} & C_{bott}
- Surface event: Signal on C_{bott} & V_{bott}

Challenges:
- Low event rate: <1 evt/kg/year
- Small energy deposit: $\mathcal{O}(\text{keV})$
- Background events by: β, γ, n, μ – induced background

- $C_{\text{top}} = +4V$
- $V_{\text{top}} = -1.5V$
- $C_{\text{bott}} = -4V$
- $V_{\text{bott}} = +1.5V$

EDELWEISS experimental setup

Cryostat

\(\text{e}^+, \text{e}^-, \gamma \), Pb shield

\(\mu \), Muon Veto

\(n \), Polyethylene shield

EDELWEISS DAQ system

FPGA based DAQ system
Hardware and software trigger, event based read out
Integration of external detectors: Muon-Veto
Option to change individual bias voltage 0V→±70V
Continuous digitization (100kHz, 16bit), optional: 40MHz, 16bit
Nuclear recoil calibration - event discrimination

- Clear event-by-event separation down to 5 keV energy (nuclear recoils)
- Response to nuclear recoils calibrated down to the analysis threshold for low-mass WIMP searches

(1 keV$_{ee}$ heat = 2.5 keV nuclear rec.)
Event rejection of γ and surface events

- γ rejection factor: $< 5.6 \times 10^{-6}$
 Updated now to $< 2.5 \times 10^{-6}$ with additional detectors + statistics
- Surface event rejection ($^{210}\text{Pb} + ^{210}\text{Bi}$ β, ^{210}Po α, ^{206}Pb recoils): $< 4 \times 10^{-5}$
 JLTP(2014)176:870

EDELWEISS FID

^{133}Ba calibration (937977 γ)

>5000 kg.day equivalent

Before rejection

- ^{210}Pb β
- ^{210}Bi β
- ^{206}Pb
- ^{210}Po α

After rejection

- 10^5 kg.day equivalent

EDELWEISS FID800
EDELWEISS-III 2014-2015 science run

161 days of physics data with 24 FIDs: >3000 kgd total exposure

- Low ER bkg: 19 FIDs used in first measurement of cosmogenic production of 3H in Ge

 arXiv:1607.04560

- 8 lowest threshold FIDs used for low-mass WIMP search

- 161 days of physics data with 24 FIDs: >3000 kgd total exposure

<0.1dru
Low mass WIMP search with likelihood analysis

\[P_{\text{tot}}(\sigma, \mu \mid m_\chi) = \frac{1}{v} \left[\mu_\chi P_\chi(m_\chi) + \sum_i \mu_i P_i \right] \]

\[\mathcal{L}(\sigma, \mu \mid m_\chi) = \prod_{n=1}^{N} P_{\text{tot}}(E_{\text{heat}}^n, E_{\text{ion}}^n) \times \prod_i \text{Gauss} \left(\mu_i \mid \mu_i^{\text{exp}}, \sigma_i \right) \times \text{Poisson} \left(N \mid v \right) \]
Results of the likelihood analysis

Bernhard Siebenborn

\[\mathcal{P}_{\text{tot}}(\sigma, \mu \mid m_\chi) = \frac{1}{v} \left[\mu_\chi \mathcal{P}_\chi(m_\chi) + \sum_i \mu_i \mathcal{P}_i \right] \]

\[\mathcal{L}(\sigma, \mu \mid m_\chi) = \prod_{n=1}^{N} \mathcal{P}_{\text{tot}}(E_{\text{heat}}^n, E_{\text{ion}}^n) \times \prod_i \text{Gauss}(\mu_i \mid \mu_i^{\text{exp}}, \sigma_i) \times \text{Poisson}(N \mid v) \]

\[m_\chi = 4\text{GeV/c}^2 \text{ excluded at 90}\%CL \]

Ionisation

Heat
First results of EDELWEISS-III phase

- Improvement by x20 to x150 between 7 and 10 GeV wrt EDELWEISS-II
- Limited by heat-only bkd: identification and rejection using the $\sigma = 230$ eV resolution on ionization
- Ionization resolution is key for rejection
- Heat resolution is key for low thresholds
EDELWEISS 2018 goals: 4x100

Challenges:

1. “Heat only” events
 \(\rightarrow \) x100 reduction

2. HEMT transistor read out
 \(\rightarrow \sigma_{\text{ion}} = 200\text{eV} \rightarrow 100\text{eV} \)

3. NTL effect read out
 \(\rightarrow V_{\text{bias}} = 8\text{V} \rightarrow 100\text{V} \)

4. Improved heat sensors
 \(\rightarrow \sigma_{\text{heat}} = 500\text{eV} \rightarrow 100\text{eV} \)
Challenge 1: Detector R&D: reducing heat only events

- Dominant (&reproducible) background at low energy
- Noise, cryogenics, stress from detector suspension: excluded as sources of this background
- Remaining suspect: stress from gluing, avoided via:
 - Two “deported NTD”, glued on separate sapphire wafer
 - Photo-lithographed high-Ω NbSi TES, sensitive to athermal phonons
Challenge 2: Detector R&D: HEMT read out

- JFET → HEMT
 - Reduced intrinsic noise
 - Lower heat load
 - Operates at 4K stage
 - → shorter cabling
 - Reduced capacitance
 - Better SNR

- Successful HEMT amplifier with sub-100 eV\textsubscript{RMS} ionization resolution

A. Phipps et al., arXiv:1611.09712
collaboration between SuperCDMS and EDELWEISS

A. Phipps et al., arXiv: 1611.09712
Challenge 3: Lower threshold by increased bias voltage

Neganov-Trofimov-Luke effect

\[\Delta T \sim E_{\text{heat}} = E_{\text{recoil}} + E_{\text{NTL}} \]

\[E_{\text{NTL}} = N \cdot e \cdot V_{\text{bias}} \]

Detector bias upgrade:

\[V_{\text{bias}} = 8V \rightarrow 140V \]

Pair creation in Ge:
1 keV \rightarrow 340 e^{-}h^{+} pairs

Sensitivity goal: <100 eV

Ionization signal measured in heat channel

\[\rightarrow \text{No particle discrimination at threshold} \]

Prompt phonons
Charge propagation
NTL amplified phonons

\[^{133}\text{Ba calibration} \]
356keV \(\gamma \)-line
Challenge 3:
Lower threshold by increased bias voltage

Neganov-Trofimov-Luke effect

\[\Delta T \sim E_{\text{heat}} = E_{\text{recoil}} + E_{\text{NTL}} \]

\[E_{\text{NTL}} = N \cdot e \cdot V_{\text{bias}} \]

Detector bias upgrade:

\[V_{\text{bias}} = 8V \rightarrow 140V \]

Pair creation in Ge:
1 keV \rightarrow 340 e^{-}h^{+} pairs
Sensitivity goal: <100 eV

Ionization signal measured in heat channel → No particle discrimination at threshold → Ionization as diagnostic signal at higher energy
Surface event discrimination by rise time

A. Broniatowski et al. PLB681(2009)305

Rise time as complementary surface rejection:

- 95% "surface" rejection
- 4.4% efficiency loss "fiducial"

(yet restricted to $E_{\text{ion}} > 100\text{keV}$)

EDW-III 40MHz digitizer
Detector R&D and MC studies of charge migration

241Am(g, 60keV)
Pb, $d=1\text{mm}$

N. Foerster et al., JLTP(2016)184:845

$V_B = -V_D = 2V$
$V_A = V_C = 0V$

$V_B = -V_D = 50V$
$V_A = V_C = 0V$

N. Foerster, PhD thesis 2017
Challenge 4: Detector R&D: Thermal model & heat sensor

- Better understanding of heat signal
 - Thermal modeling of signal, verified with dedicated R&D
 - Identification of sensitivity to ballistic phonons
 - Identification of parasitic heat capacity

- Sensitivity of 200 nV/keV
 - (x6 wrt present FIDs) achieved on 250 g test detectors

J. Billard et al., JLTP(2016)184:299
EDELWEISS 2018 goal

EDW-III 350 kg.d, EDW-III background assumed

100V, $\sigma=100\text{eV(heat)}$

$1/100$ reduction of heat only

350kg.d bgd-free

$8\text{V}, \sigma=100\text{eV(ion)}$

JLTP(2016)184:308

EPJC (2016) 76:548

reachable in current LSM setup in 2018
Conclusion and Outlook

EDELWEISS-III results 2016

EDW-III goals 2018

going beyond (35kg x 1000days)

no neutron-bgd, 0.1 x Compton

WIMP-Nucleon Cross Section (SI) (cm²)

WIMP Mass (GeV/c²)

100V
8V
350kg-days

25 Bernhard Siebenborn
Conclusion and Outlook

Going beyond:
SuperCDMS +
EDELWEISS at
SNOLab

EDELWEISS-III results 2016

EDW-III goals 2018

35 ton-days