Dark Matter Searches at Super-Kamiokande

Piotr Mijakowski
National Centre For Nuclear Research
Warsaw, Poland
Indirect searches for dark matter induced neutrinos at Super-Kamiokande:

1. Galactic Center & Halo 2017
2. Sun 2015
3. Earth 2017
Super-Kamiokande

@ Kamioka Observatory (ICRR, University of Tokyo), Japan

- Super-Kamiokande runs from 1996
- T. Kajita → Nobel Prize 2015
- Measures solar, atmospheric, cosmic & accelerator neutrinos

- ~11k ID, ~1.8k OD
- Located 1km underground
- 50 kton of pure water (22.5 kton FV)
- Inner (ID) & outer/veto (OD) detection regions
- PMTs detect Cherenkov light

Located in Japan.
Detected Cherenkov light allows for reconstruction of:

- lepton momentum (neutrino energy)
- lepton direction
- lepton flavor (e-like vs. µ-like, good separation possible)

\[\nu_e + N \rightarrow e^- + N' \]
Atmospheric neutrinos: main background in DM-induced ν searches

- ~10 events/day
- data period: 1996-2016
- ~50 000 events in total

Monte Carlo

Events / 4600 Days

FC
PC
UPMU

- ν_e
- ν_μ
- WIMPs

atmospheric neutrinos at SK

$E^2 \Phi$ [GeV cm$^{-2}$ sr$^{-1}$ sec$^{-1}$] vs. $\log_{10}(E_\nu / \text{GeV})$

Super-Kamiokande I-IV ν_μ
Frejus ν_μ
IceCube ν_μ unfolding
IceCube ν_μ forward folding
AMANDA-II ν_μ unfolding
AMANDA-II ν_μ forward folding
ANTARES ν_μ
HKKM11 $\nu_\mu \nu_\mu$ (w/ osc.)

- ν_e
- ν_μ
- Frejus ν_e
- IceCube/DeepCore 2013 ν_e
- IceCube 2014 ν_e
- HKKM11 $\nu_e \nu_e$ (w/ osc.)
Dark matter searches at Super-Kamiokande

• Search for excess of neutrinos from Earth/Sun/Milky Way
• **FIT:** for each tested WIMP mass, find configuration of ATM $\nu + DM$ signal that would match DATA the best

Galactic WIMP search
Earth WIMP search
Solar WIMP search

- **MultiGeV μ-like**
- $\cos \theta_{GC}$
- $\cos \theta_{ZENITH}$
- $\cos \theta_{SUN}$

• In these coordinate systems, signal is easy to distinguish from atmospheric neutrino background

Detector
θ_{GC}, θ_{SUN} or θ_{zenith}
lepton direction
Galactic Center, Sun
Earth
SK

DATA
ATM MC (BKG) with oscillations
WIMP signal enhanced for illustration
Galactic WIMP search

- diffuse signal from entire Galaxy, peaked from Galactic Center
- GC visibility with SK: ~71% with UPMU, 100% FC/PC
- search constrains DM self-annihilation cross section $\langle \sigma v \rangle$

Expected signal intensity strongly depends on halo model
NFW is considered as a benchmark model in this analysis
Galactic WIMP search: data

- FIT based on lepton mom. & $\cos\theta_{\text{GC}}$ distributions, 5326-5629 live-days, 1996-2016
- NFW halo model assumed
- Fit results are consistent with null WIMP contribution
- 90% CL upper limit on DM self-annihilation cross section $<\sigma_A V>$

proportions of the signal in various samples are reflected
Galactic WIMP search: fitted number of DM-induced ν's

- FIT based on lepton mom. & $\cos\theta_{GC}$ distributions, 5326-5629 live-days, 1996-2016
- NFW halo model assumed
- Fit results are consistent with null WIMP contribution
- 90% CL upper limit on DM self-annihilation cross section $<\sigma_A V>$

SK preliminary points on the plots are not independent

\sim150 systematic uncertainty terms included in the fit p-values in backup
Galactic WIMP search: DM self-annihilation cross section

- FIT based on lepton mom. & \(\cos \theta_{\text{GC}} \) distributions, 5326-5629 live-days, 1996-2016
- NFW halo model assumed
- Fit results are consistent with null WIMP contribution
- 90% CL upper limit on DM self-annihilation cross section \(<\sigma_A V> \)

\[
\frac{d\phi_{\Delta\Omega}}{dE} = \frac{1}{2} \left\langle \sigma_A \cdot V \right\rangle J_{\Delta\Omega} \frac{R_{sc} \rho_{sc}^2}{4\pi M^2_\chi} \frac{dN}{dE}
\]

90% CL upper limit on DM self-annihilation cross section
Solar WIMP search

- DM particles passing through the Sun can elastically scatter with nuclei and lose energy.

- WIMP density increases in core, leading to DM annihilation until equilibrium is achieved:
 \[\text{capture rate} = \text{annihilation rate} \]

- Scattering cross section \(\sigma_{\chi n} \) can be constrained and compared with results from direct DM detection.

Solar WIMP search

- FIT based on lepton mom. & \(\cos\theta_{\text{SUN}} \) distributions, 3903 days of SK data (1996-2012)
- No excess of \(\nu \)'s from the SUN as compared to atm bkg
- 90% CL upper limit on WIMP-nucleon scattering cross section \(\sigma_{Xn} \) for \(\tau^+\tau^- \), \(bb \) and \(W^+W^- \) channels

example for: 200 GeV WIMPs, \(\tau^+\tau^- \) ann. channel

- **SubGeV angle**
- **MultiGeV angle**
- **SubGeV energy**
- **MultiGeV energy**
- **PC + stopping muon angle**
- **Through-going muon angle**

P.Mijakowski
Solar WIMP search: WIMP-nucleon SI & SD cross section limit

90% CL upper limit

spin dependent interactions

spin independent interactions

Earth WIMP search

- Spin-independent interactions dominate in the capturing process → scalar interaction in which WIMPs couple to the nucleus mass
- If the mass of DM matches given heavy element, the capture rate increases considerably

![Graph showing capture rate in the Earth vs WIMP mass](image)

\[\sigma_{SI} = 10^{-42} \text{ cm}^2 \]

The peaks correspond to **resonant capture** on the most abundant elements \(^{16}\text{O},^{24}\text{Mg},^{28}\text{Si}\) and \(^{56}\text{Fe}\) and their isotopes

WIMP-nucleon SI scattering cross section \(\sigma_{\chi n}\) can be constrained and compared with results from direct DM detection.
Earth WIMP search: data

- FIT based on lepton mom. \& $\cos^2\theta_{\text{zenith}}$ distributions, 5326-5629 live-days, 1996-2016
- Fit results are consistent with null WIMP contribution
- 90 % upper limits on SI WIMP-nucleon scattering cross section $\sigma_{\chi-n}$

Example: 50GeV WIMPs bb ann. channel

Proportions of the signal in various samples are reflected
Earth WIMP search: fitted number of DM-induced νs

- FIT based on lepton mom. & $\cos\theta_{\text{zenith}}$ distributions, 5326-5629 live-days, 1996-2016

- Fit results are consistent with null WIMP contribution

- 90% upper limits on SI WIMP-nucleon scattering cross section $\sigma_{\chi-n}$
Earth WIMP search: WIMP-nucleon SI cross-section limit

- FIT based on lepton mom. & $\cos\theta_{\text{zenith}}$ distributions, 5326-5629 live-days, 1996-2016
- Fit results are consistent with null WIMP contribution
- 90% upper limits on SI WIMP-nucleon scattering cross section $\sigma_{\chi-n}$
Summary

• DM induced neutrinos has not been observed at Super-Kamiokande so far

• Galactic WIMP search (2017)
 • upper limits on $<\sigma_A V>$ for wide range of WIMPs masses (1 GeV to 10 TeV)
 • strongest limits < 20-100GeV among ν experiments

• Solar WIMP search (2015)
 • strongest limits < 20-100GeV among ν experiments

• Earth WIMP search (2017)
 • upper limits on spin-independent WIMP-nucleon cross-section
 • high sensitivity to resonant capture region \rightarrow currently the strongest limits from ν experiments
Thank you!

... we keep looking

SK will be re-open for upgrade this year!!!
supplementary slides
Signal simulation

Simulate DM signal before detection \(\rightarrow\) DarkSUSY & WimpSim

P. Gondolo et al., JCAP 07, 008 (2004)

EXAMPLE: Galactic WIMP search

differential \(\bar{\nu}_\mu \nu_\mu\) energy spectra per DM annihilation for \(M_\chi = 100\) GeV (oscillated throughout Galaxy)

EXAMPLE: Earth WIMP search

muon neutrino flux produced in WIMP annihilation in the Earth’s core

PARAMETERS:
- WIMP mass = 100 GeV
- Annihilation channel:
 - \(b\bar{b}\)
 - \(\tau^+\tau^-\)
 - \(W^+W^-\)

Angular distribution of muon neutrinos from the Earth’s core

\(E_\nu\) [GeV]

\(d^2N/dE\) [per ann. GeV]
Super-K data samples

Fully-contained
- ν energy reconstruction
- ν direction info
- e/μ identification possible

Partially-contained
- partial E_ν info (lepton leaves detector)
- ν direction info

Upward-going muons
- no E_ν info
- excellent ν direction info
- downward-going muons are neglected (mainly cosmic ray μ)
 Galactic WIMP search: **ON-/OFF-source**

Different approach: search for large-scale anisotropy due to DM-induced ν's from Milky Way

\[
\Delta N \approx N_{on}^{\text{sig}} - N_{off}^{\text{sig}} = \Delta N^{\text{sig}} \propto \langle \sigma_A \nu \rangle
\]

- Analysis uses ON-/OFF-source concept to estimate background directly from data
- Independent on MC simulations and related systematic uncertainties
ON- & OFF-source results

SKI-IV, 1996-2016

\[A = \frac{(N_{ON} - N_{OFF})}{(N_{ON} + N_{OFF})} \]
Galactic WIMP search: p-value’s
Galactic WIMP search: signal illustration 10GeV bb-bar

\[\cos \theta_{GC} \]

\[M_\chi = 10.0 \text{ GeV/c} \]
Galactic WIMP search: signal illustration 100GeV bb-bar

\cos \theta_{GC}

M_\chi = 100.0 \text{ GeV/c}

Data
SK1-4, 1996-2016

ATM MC+WIMP
at best fit point

WIMP
before fit
 Galactic WIMP search: signal illustration 1000GeV bb-bar

\[\text{cos} \theta_{GC} \]

\[M_\chi = 1000.0 \text{ GeV/c} \]

DATA
SK1-4, 1996-2016

ATM MC+WIMP at best fit point

WIMP before fit
Galactic WIMP search: residuals for 5GeV bb-bar best fit

\[\chi_2^{\text{total}} = \chi_2^{\text{data}} + \chi_2^{\text{syst}} \]

\[604.0 = 566.9 + 37.0 \]

\[601.6 = 564.9 + 36.7 \]

\[\Delta \chi_2 = 2.4 = 2.0 + 0.4 \]

points: data set
red line: only ATM MC (with pulls)
color line: best fitted WIMP + ATM MC (all with pulls)

\[\cos \theta_{GC} \]

\[M_\chi = 5.0 \text{ GeV/c} \]
‘Boosted’ dark matter search

Cone search: 8 cones from 5° to 40° around GC → no clusters visible

limit for $m_\gamma=20$ MeV