The SuperCLASS Radio Weak Lensing Survey

Ian Harrison @itrharrison
on behalf of the SuperCLASS collaboration (~30 people)

53rd Rencontres de Moriond
La Thuile
21 March 2018
The SuperCLuster Assisted Shear Survey
Radio Weak Lensing Survey

Ian Harrison @itrharrison
on behalf of the SuperCLASS collaboration (~30 people)

53rd Rencontres de Moriond
La Thuile
21 March 2018
Radio Weak Lensing Timeline

Stage IV
- Euclid
- LSST
- SKA2

Stage III
- DES
- KiDS
- HSC
- SKA1
- WFIRST-AFTA
- CFHTLens

Stage II
- FIRST
- COMBO-17
- HST-COSMOS
- (V-DECS)
- (e-MERLIN+)

Stage I
- SuperCLASS
- VLA-COSMOS-3GHz

Stage 0
- HDF-N

Year
- 2000
- 2010
- 2020
- 2030
- 2040

Total Galaxies
- 10^9
- 10^8
- 10^7
- 10^6
- 10^5
- 10^4
- 10^3
- 10^2
SuperCLASS
The Survey

- Aiming for first solid detection of weak lensing signal in the radio waveband
- ~1 galaxy arcmin$^{-2}$ for shape measurement
 - Detected
 - Resolved
 - High redshift
- ~1 deg2

Full survey forecast from N-body simulations
SuperCLASS
The Survey

• Radio shear:
 – e-MERLIN (1.4 GHz)
 – JVLA (1.5 GHz)

• Optical shear, photo-zs:
 – Subaru (BVRIz)
 – CFHT (near-IR)

• Source classification, RM-synthesis:
 – GMRT (325 MHz)
 – LOFAR (150 MHz)

• Source classification:
 – Spitzer (3.6, 4.5 um)
 – SCUBA-2 (submm)
 – AMI (15 GHz)
SuperCLASS
The Survey

- Currently have
 - e-MERLIN
 (Northern half only)
 - ~95% taken
 - 50% reduced
 - JVLA
 - 100% taken
 - 100% reduced

- DR1 in April 2018
 - ~0.26 deg2 to ~7 uJy
 - Survey description paper
 - Radio x Optical lensing paper – detection possible
 - Radio-only lensing paper – detection unlikely!
SuperCLASS
Scales of Interest

e-MERLIN
UK Midlands

JVLA
New Mexico desert

Real space telescope positions

People’s heads here.
SuperCLASS
Scales of Interest

e-MERLIN
UK Midlands

JVLA
New Mexico desert
SuperCLASS
Scales of Interest

- Combination of e-MERLIN and JVLA baselines gives access to relevant spatial scales

- Ideally, would combine data in Fourier space, then image
 - This is hard due to real world foibles with the data

![Image of graph showing 1.4 GHz Angular size in arcsec vs. log10 Baseline length in meters with Shear Signal, JVLA, and e-MERLIN data]
SuperCLASS
Scales of Interest

e-MERLIN

Real space PSFs

JVLA
SuperCLASS
Scales of Interest

e-MERLIN

JVLA

Real space PSFs
SuperCLASS
Scales of Interest

Real space PSFs

e-MERLIN vs. JVLA
SuperCLASS
Scales of Interest

e-MERLIN

JVLA

Fourier plane coverage
SuperCLASS
Scales of Interest

e-MERLIN

JVLA

Fourier plane coverage

People’s heads here.
SuperCLASS e-MERLIN Data

- 49 pointing mosaic to target sensitivity
 - ~400 hours of data
 - 2 years of effort by Bob Watson to reduce
 - Pushed the limits of wide-field imaging with e-MERLIN

- Source classification via Zooniverse visual inspection (AGN or SFG)

- Raw $n_{\text{gal}} \approx 0.2 \text{ arcmin}^{-2}$
- $n_{\text{gal}} \approx 0.1 \text{ arcmin}^{-2}$ for DR1 WL sample
SuperCLASS
JVLA Data

• Mosaic of full field (1.75 deg2) to target sensitivity
 – ~24 hours of data
• Raw $n_{\text{gal}} \sim 1$ arcmin$^{-2}$
 – JVLA sensitive to diffuse flux which is hard to detect in e-MERLIN
• $n_{\text{gal}} \sim 0.1$ arcmin$^{-2}$ for DR1 WL sample
 – Defined on e-MERLIN area
SuperCLASS
Example Sources

People’s heads here.
SuperCLASS
Optical Data

- High-quality optical BVri imaging (0.4” – 1.3” seeing) from Subaru Suprime-Cam

- E-mode power spectrum detected at 9.3σ
- Consistent with expected signal for supercluster region

B-mode power spectrum consistent with zero
• Developed full end-to-end pipeline for simulation of radio observations
 – Source populations
 – Sky model (galsim)
 – Full telescope+noise model in visibility plane
 – Imaging
 – Source finding

• Quantify shear biases in pipeline
SuperCLASS
Constraints on Source Profiles

• Simulations of ‘smooth’ (Sersic) starforming galaxy source profiles do not match rea detection rates
 – Sources seem to contain more compact structure than expected
 – Desire: deep observations with very good UV coverage to learn about SFG source profiles
SuperCLASS
Source Properties – e-MERLIN

Source size

Source flux

Source position angle

All sources

Resolved sources

Source ellipticity

(Preliminary)

People’s heads here.
SuperCLASS
Source Properties – JVLA

(Preliminary)
SuperCLASS

ToDo List for DR1

• Source catalogue pretty much ready
• Create radio shear catalogue
• Create radio-radio, radio-optical shear power spectra

SuperCLASS – I. The Super CLuster Assisted Shear Survey: Project overview and first data release

SuperCLASS – II. Radio shapes of weak lensing sources

SuperCLASS – III. Weak lensing from radio-optical cross-correlations
SuperCLASS

Goals for DR2

• Fourier plane combination of data from both telescopes!
 – Will allow combined imaging, combined fitting
• Well motivated source models from deeper surveys
• Analysed using prototype SKA SDP pipeline
• Automated source classification
• Squeezing the n_{gal} up towards 1 arcmin$^{-2}$
SuperCLASS Summary

- Observing $\sim 1 \text{ deg}^2$ supercluster region to detect weak lensing shear signal in radio data
- Combining e-MERLIN, JVLA to access relevant spatial scales
- Built simulation pipeline to quantify systematics
- First results imminent..!
- **Pathfinder** for excellent weak lensing cosmology constraints with SKA
 - SKAxOptical can beat WL systematics