Radio Weak Lensing with 3 GHz
JVLA COSMOS Observations

Tom Hillier

Supervisor: Prof. Michael Brown
Co-Supervisor: Dr Ian Harrison

53rd Rencontres de Moriond, La Thuile
21st March 2018

Previous relevant talks:
Dan Thomas: Overview & Radio Shape Measurement
Ian Harrison: SuperCLASS
Contents

1. Introduction
 i. Radio Weak Lensing Timeline
 ii. The COSMOS Field

2. 3 GHz JVLA Catalogue
 i. Observations
 ii. Source Selection: Principal Component Analysis

3. Cross-Matching Radio & Optical
 i. Position Angles
 ii. Cross-Power Spectra

}\ Main Science Output
Radio Weak Lensing Timeline

1. Forecasts ✓
 SKA Weak Lensing I, II & III papers (arXiv:1601.03947; 1601.03948; 1606.03451)

2. Pathfinding
 JVLA COSMOS
 SuperCLASS

3. Cosmological constraints
 SKA Weak Lensing ~2030

Credit: Dr Ian Harrison
COSMOS Field

Surveys:
- Chandra (X-ray)
- Hubble Space Telescope (optical)
- GALEX (UV)
- CFHT (optical)
- JVLA (radio)

Credit: Dr Ian Harrison
3 GHz JVLA Observations

- **192 pointings:**
 - 64 separated by 10′ in RA and DEC
 - 64 +5′ in RA and DEC
 - 64 -5′ in RA and DEC

 ⇒ uniform rms noise

384 hours:
- 324 hours in A-Configuration (longer baselines)
- 60 hours in C-Configuration (shorter baselines)

Bandwidth of 2048 MHz centred on 3 GHz

Smolčić et al. (2017), arXiv:1703.09713v1
Source Selection: Initial Issues

10,830 sources in catalogue

- Star-Forming Galaxies ✓
- AGN ✗
- Unresolved Objects ✗

Shapes from real-space image using im3shape (1st talk from Dan)

Low $|\varepsilon|$ excess
⇒ many small circular unresolved objects?

Singular parameter cuts on source catalogue don’t work
⇒ Need composite cuts: Principal Component Analysis

Size $\geq 1 \times$ PSF ($\geq 0.75''$)

Size $\geq 1.5 \times$ PSF ($\geq 1.125''$)
Source Selection: Principal Component Analysis

Size cut:

- \(|\varepsilon| > 0.05 \rightarrow 2,080 \) sources
- \(|\varepsilon| \leq 0.05 \rightarrow 1,679 \) sources

Details:

10,830 sources

\[PC_i = (p_i^x_0 \times x0) + (p_i^y_0 \times y0) + (p_i^{\text{radius}} \times \text{radius}) + (p_i^{\text{ra}} \times \text{ra}) + (p_i^{\text{dec}} \times \text{dec}) + (p_i^{\text{flux}} \times \text{flux}) + (p_i^{\text{rms}} \times \text{rms}) \]

Graphs:

- PCA weights
- Explained variance ratio vs. component number
Source Selection: PCA-Output Catalogue

- Size cut $\geq 1 \times \text{PSF}$
- $|\varepsilon| > 0.05$ for 2,080 sources
- $|\varepsilon| \leq 0.05$ for 1,679 sources
- PCA
- Remove everything with PC1 ≥ -44 & PC2 ≤ 0.9

- 10,830 sources
- 3,759 sources
- 2,028 sources

Mainly neglected $|\varepsilon| \leq 0.05$ sources, but included some.
Mainly included $|\varepsilon| > 0.05$ sources, but neglected some.

~35% larger than using singular cuts (1,539 sources).
Source Selection: COSMOS Catalogues

<table>
<thead>
<tr>
<th>WL Source Density</th>
<th>Optical</th>
<th>Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34 gal arcmin$^{-2}$</td>
<td>0.3 gal arcmin$^{-2}$</td>
</tr>
</tbody>
</table>

![Optical Source Map](image1.png)

![Radio Source Map](image2.png)
Cross-Matching Optical and Radio

Pearson’s Correlation Coefficient, R_a

<table>
<thead>
<tr>
<th></th>
<th>R_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work (2018)</td>
<td>0.14</td>
</tr>
<tr>
<td>VLA 3 GHz COSMOS</td>
<td></td>
</tr>
<tr>
<td>Perfect Correlation</td>
<td>1</td>
</tr>
<tr>
<td>No Correlation</td>
<td>0</td>
</tr>
<tr>
<td>Negative Correlation</td>
<td>-1</td>
</tr>
<tr>
<td>Patel et al. (2010)</td>
<td>0.097</td>
</tr>
<tr>
<td>VLA MERLIN Hubble Deep Field North</td>
<td></td>
</tr>
<tr>
<td>Tunbridge et al. (2016)</td>
<td>0.028</td>
</tr>
</tbody>
</table>
Cross-Matching
Optical and Radio
Cross-Matching Optical and Radio

Need a more statistical measure between radio and optical signals
⇒ Power Spectra

\[R_\alpha = 0.14 \]
Power Spectra

\[\langle \gamma_i \gamma_j \rangle (\theta) \]

c.f. CMB polarisation power spectra

Publicly available at https://bitbucket.org/fkoehlin/qe_public

z1 \times z2 \rightarrow \text{Radio} \times \text{Optical}
Power Spectra: Gaussian Random Fields

100 Realisations
- Each 2 deg²
- Scatter, $\sigma_\varepsilon = 0.3$

Source Density
- Optical
 - 30 gal arcmin⁻²
- Radio
 - 0.3 gal arcmin⁻²

$$D = \sqrt{\sum_{\ell} \left(\frac{\hat{C}_\ell^{EE}}{\sigma'_\ell} \right)^2}$$

Detection Significance, D
- Optical-Optical: 7.7
- Radio-Optical: 1.4
- Radio-Radio: 0.1
Conclusions

• PCA applied to source selection works, although needs refining to remove e.g. AGN

• **Cross-Matching Radio & Optical**
 • Position Angle-matching shows a good correlation between radio and optical catalogues: improvement on previous results

 ![Graph](image)

 \[R_\alpha = 0.14 \]

• Significant cross-power spectrum possible with current data:
 \[D = 1.4 \]