Testing the CDM paradigm with the CMB

Michael Kopp
CEICO, Institute of Physics of the Czech Academy of Sciences

in collaboration with
Dan Thomas and Constantinos Skordis
and Stéphane Ilić

Moriond, March 22 2018
Outline

(0) Motivation

(1) Generalised dark matter (GDM),
 - 3 new parameters (2 for pressure, 1 for viscosity) for 3 d.o.f.
 - CMB with Λ-GDM. Constraints from Planck:
 - old) all 3, but constant. new) only 1, but time-dependent.
 - Both cases consistent with ΛCDM. No hints for “beyond CDM”.

(2) Parametrized Post Friedmann (PPF) frame work,
 - Special case: 2 new parameters, no d.o.f. associated with DM.
 - Bad fit to CMB. DM phenomenon requires degrees of freedom.
Believing in dark matter

- Extensions of the standard model of particle physics (SM). Yet no detection.

- Cold dark matter (CDM) gives concordant picture within General Relativity (GR). Some tensions.

- Modified gravity?:
 - GR’s success for over a century
 - Lack of working alternatives

\[T^\mu_\nu = T_{\text{cdm}}^\mu_\nu + T_\Lambda^\mu_\nu + T_{\text{SM}}^\mu_\nu = (8\pi G_N)^{-1} G^\mu_\nu \]
Believing in dark matter

- Extensions of the standard model of particle physics (SM). Yet no detection.

- Cold dark matter (CDM) gives concordant picture within General Relativity (GR). Some tensions.

- Modified gravity?:
 - GR’s success for over a century
 - Lack of working alternatives

\[
T^\mu_\nu = \left[T_g + T_\Lambda + T_{SM} \right] = \left(8\pi G_N \right)^{-1} G^\mu_\nu \\
g \text{ for GDM}
\]
Believing in dark matter

- Extensions of the standard model of particle physics (SM). Yet no detection.

- Cold dark matter (CDM) gives concordant picture within General Relativity (GR). Some tensions.

- Modified gravity?:
 - GR’s success for over a century
 - Lack of working alternatives

\[T^\mu_\nu = T^\Lambda_{\mu\nu} + T^\text{SM}_{\mu\nu} = (8\pi G_N)^{-1} \left(G^\mu_\nu + \mathbf{U}^\mu_\nu \right) \]
Dark matter fluid

\[T_{\mu\nu} = \rho u_\mu u_\nu + P(g_{\mu\nu} + u_\mu u_\nu) + \Sigma_{\mu\nu} \]

- Cold and Collisionless particles in the continuum limit are described before shell crossing as pressureless perfect fluid (=CDM in *camb* and *CLASS*)

\[
\text{Planck 2015 XX, 1502.02114} \quad \beta_{c,\text{iso}} < 0.038 \\
\text{Planck 2015 XIII, 1502.01589} \quad \omega_c = 0.12 \pm 0.0027
\]

- General fluid has pressure \(P = P(\rho, \phi, \nabla_\mu u_\nu, f(x,p), \ldots) \).

- Shear \(\Sigma_{\mu\nu}(\rho, \nabla_\mu u_\nu, g_{\mu\nu}, f(x,p), \phi, \ldots) \), spatial and traceless

⇒ More DM properties that we can potentially measure!
⇒ Test the CDM paradigm
1) **Generalised Dark Matter**

Linear scalar perturbation

- Perturbed stress-energy-momentum tensor
 \[
 T_{g\mu}^{\nu} = \rho_g u_{g\mu} u_{g\nu} + P_g (\delta^{\mu}_{\nu} + u_{g\mu} u_{g\nu}) + \Sigma_{g\nu}^{\mu}
 \]

- \(\delta_g = \delta \rho_g / \bar{\rho}_g \)
- \(u_{g\mu} = -a \partial_{\mu} \theta_g \)
- \(w = \bar{P}_g / \bar{\rho}_g \)
- \(\Pi_g = \delta P_g / \bar{\rho}_g \)

- \(\nabla_{\mu} T_{g\mu}^{\nu} = 0 \) perturbed conservation equation
1) Generalised Dark Matter

Linear scalar perturbation

- **Perturbed stress-energy-momentum tensor**

\[T_{g \nu}^\mu = \rho_g u_{g \mu} u_{g \nu} + P_g (\delta_{g \mu} + u_{g \mu} u_{g \nu}) + \Sigma_{g \mu} \]

- **Perturbed stress-energy balance**

\[\delta_g = \frac{\delta \rho_g}{\bar{\rho}_g} \]

\[u_{g i} = -a \partial_i \theta_{g} \]

\[\Pi_g = \delta P_g / \bar{\rho}_g \]

- **Perturbed conservation equation**

\[\nabla_\mu T_{g \mu \nu} = 0 \]

- **GDM parameters**

 - \(w(\tau) \)
 - \(c_s^2(k, \tau) \)
 - \(c_{\text{vis}}^2(k, \tau) \)
 - \(c_a^2 = \frac{\dot{P}_g}{\bar{\rho}_g} = w - \frac{\dot{w}}{3 \mathcal{H}(1 + w)} \)

- **GDM closure equations**

\[\Pi_g = c_a^2 \delta_g + (c_s^2 - c_a^2) \hat{\Delta}_g \]

- **Non-adiabatic pressure** \(\Pi_{\text{nad}} \) vanishes if \(P_g = P_g(Q_g) \)

\[\dot{\Sigma}_g = -3 \mathcal{H} \Sigma_g + \frac{4}{(1 + w) \bar{\rho}_g} c_{\text{vis}}^2 \hat{\Theta}_g \]

\[\text{made-up by W. Hu 1998 ApJ 506} \]

\[\text{Blas et al 2011 JCAP 7} \]

\[\text{Newtonian} \]
GDM from...

Particles (Boltzmann equation)
- Freely streaming **warm dark matter**
 - Armendariz-Picon, Neelakanta, JCAP 2014
- Specific models, like **self interacting massive neutrinos and dark atoms + dark photons**
 - Oldengott et al, JCAP 2015
 - Cyr-Racine, Sigurdson, PRD 2013

Fields (effective or fundamental)
- **Axion condensates.**
 - Sikivie, Yang, PRL 2009
- **Effective theory of large scale structure:** Landau-Lifshitz type energy momentum tensor for **CDM** due to small scale nonlinearities
 - Baumann et al, JCAP 2012
- **K-essence** and more general **constrained-norm scalar field theories.**
 - Scherrer, PRL 2004
 - Ballesteros, JCAP 2015

Fluids (imperfect, or coupled perfect)
- Kopp et al, 1605.00649
Rough estimates

\[w \approx c_s^2 \approx c_{\text{vis}}^2 \]

GDM with constant parameters
Thomas et al, 1601.05097

Freely streaming CDM, warmed-up by non-linearities, EFTofLSS
Baumann et al, JCAP 2012

Freely streaming warm dark matter
Armendariz-Picon et al, JCAP 2014

CDM neutralino \(10^{-24}\)

Upper limit from CMB+Ly-\(\alpha\)

Upper limit from CMB+Ly-\(\alpha\)

Ruled out by Planck
Extending ΛCDM into Λ-GDM: Imprints on the CMB and Constraints from Planck

Based on a modified CLASS code Lesgourgues 2011, MCMC 6+3 params with montepython

Constraints
(99.7% c.l.)

$w < 2.4 \times 10^{-3}$
$w > -0.9 \times 10^{-3}$

$c_s^2 < 3.21 \times 10^{-6}$
$c_{\text{vis}}^2 < 6.06 \times 10^{-6}$

Thomas et al, 1601.05097

Similar studies:
Mueller, PRD 71 2005
Calabrese et al, PRD 80 2009
Xu, Chang, PRD 88, 2013

Thomas et al, 1601.05097
Kunz et al, 1604.05701
Tutusaus et al, 1607.08016
Extending ΛCDM into Λ-GDM: Imprints on the CMB and Constraints from Planck

Based on a modified CLASS code Lesgourgues 2011, MCMC 6+3 params with montepython

Data: Planck 2015, SDSS-III 2013

$$a^3 \bar{\rho}_g \propto \omega_g^{(0)} (1 + 3w \ln(1 + z))$$

- Changes $q_{\text{rad}}/q_{\text{matter}}$ during recombination: peak heights
- Angular diameter distance to last scattering: peak positions

Constraints (99.7% c.l.)

- $w < 2.4 \times 10^{-3}$
- $w > -0.9 \times 10^{-3}$

$$c_s^2 < 3.21 \times 10^{-6}$$
$$c_{\text{vis}}^2 < 6.06 \times 10^{-6}$$

Thomas et al, 1601.05097

Similar studies:
- Mueller, PRD 71 2005
- Calabrese et al, PRD 80 2009
- Xu, Chang, PRD 88, 2013
- Thomas et al, 1601.05097
- Kunz et al, 1604.05701
- Tutusaus et al, 1607.08016
Extending \(\Lambda \)CDM into \(\Lambda \)-GDM: Imprints on the CMB and Constraints from Planck

Based on a modified \textsc{CLASS} code Lesgourgues 2011, MCMC 6+3 params with \textsc{montepython} data: Planck 2015, SDSS-III 2013

\[
a^3 \overline{\rho}_g \propto \omega_g^{(0)} (1 + 3w \ln(1 + z))
\]

- Changes \(\Omega_{\text{rad}}/\Omega_{\text{matter}} \) during recombination: peak heights
- Angular diameter distance to last scattering: peak positions

\[
k_{\text{decay}}^{-1} H \simeq \sqrt{c_s^2 + 0.5 c_{\text{vis}}^2}
\]

- Potentials \(\Phi, \psi \) decay below \(k_{\text{decay}} \): less CMB lensing
- \(c_s^2, c_{\text{vis}}^2 \) are uncorrelated with \(w \). Setting \(c_s^2 = c_{\text{vis}}^2 = 0 \) gives same constraints on \(w \).

Constraints (99.7\% c.l.)

\[
\begin{align*}
w &< 2.4 \times 10^{-3} \\
w &> -0.9 \times 10^{-3}
\end{align*}
\]

\[
\begin{align*}
c_s^2 &< 3.21 \times 10^{-6} \\
c_{\text{vis}}^2 &< 6.06 \times 10^{-6}
\end{align*}
\]

Similar studies:

- Mueller, PRD 71 2005
- Calabrese et al, PRD 80 2009
- Xu, Chang, PRD 88, 2013
- Thomas et al, 1601.05097
- Kunz et al, 1604.05701
- Tutusaus et al, 1607.08016

\[\text{(99.7\% c.l.)}\]
CMB constraints on time-dependent $w(a)$

Simultaneous constraints on 8 piecewise constant w-bins.
Based on a modified CLASS code Lesgourgues 2011. MCMC 6+8 params with montepython

- c_s^2, c_{vis}^2 are uncorrelated with w \Rightarrow safe to fix $c_s^2 = c_{vis}^2 = 0$
- 8 bins give rise to a sufficiently general time dependence

Kopp et al, 1802.09541
Simultaneous constraints on 8 piecewise constant \(w \)-bins.

Based on a modified CLASS code Lesgourgues 2011. MCMC 6+8 params with montepython

- \(c_s^2, c_{vis}^2 \) are uncorrelated with \(w \) \(\Rightarrow \) safe to fix \(c_s^2 = c_{vis}^2 = 0 \)
- 8 bins give rise to a sufficiently general time dependence
- conservative way to test coldness of DM

\(\frac{\text{var-}w}{\text{ const-}w} \) PPS, PPS+BAO, PPS+HST

99% contours

- Planck power spectra (PPS)
- 6dF and SDSS-III BOSS surveys (BAO)
- Hubble Space Telescope (HST)
CMB constraints on time-dependent $w(a)$

Simultaneous constraints on 8 piecewise constant w-bins.

Based on a modified CLASS code Lesgourgues 2011. MCMC 6+8 params with `montepython`

- c_s^2, c_{vis}^2 are uncorrelated with w \Rightarrow safe to fix $c_s^2 = c_{\text{vis}}^2 = 0$
- 8 bins give rise to a sufficiently general time dependence
- conservative way to test coldness of DM

Data:
- Planck power spectra (PPS)
- 6dF and SDSS-III BOSS surveys (BAO)
- Hubble Space Telescope (HST)

Based on a modified CLASS code Lesgourgues 2011. MCMC 6+8 params with `montepython`

- c_s^2, c_{vis}^2 are uncorrelated with w \Rightarrow safe to fix $c_s^2 = c_{\text{vis}}^2 = 0$
- 8 bins give rise to a sufficiently general time dependence
- conservative way to test coldness of DM

$w=0$, constant w and varying w are nested \Rightarrow CDM favoured
CMB constraints on DM abundance

Derived from constraints on $8 w_i$ and $\omega_g^{(0)}$

- c_s^2, c_{vis}^2 are uncorrelated with w ➞ safe to fix $c_s^2 = c_{vis}^2 = 0$
- 8 bins give rise to a sufficiently general time dependence
- conservative way to test abundance of DM at different epochs

$$\omega_g(a) \equiv a^3 \bar{\rho}_g \frac{8\pi G}{3 \times (100 \text{ km/s/Mpc})^2}$$

$$\frac{d \ln \omega_g(a)}{d \ln a} = -3 w(a)$$

$$\omega_g(a = 1) = \omega_g^{(0)}$$

DM abundance is:
- Nonzero at all times
- Tightly constrained around equality
- Well constrained around $a = [0.2-0.4]$
$w(a)$ degeneracies

68% and 95% contours of 2D marginalised posteriors

$a_0 = 1$

- Loss of constraining power at late times in the var-w model since the late Universe behaviour disassociates from the early Universe.
- Adding BAO or HST data thus strongly affects contours
- ω_g is anticorrelated with Ω_Λ since combination of CDM and Λ can be modeled by wDM.

$a_6 = 10^{-3.75} = 0.00018$

- Strong constraining power at early times. Nearly as good as const w or CDM
- ω_g is better constrained then w. Causes correlations.
Summary (GDM)

- ‘Generalized dark matter’ GDM with 3 new parameters allows to constrain dark matter properties and thus to **test the CDM paradigm**.

- For the first time the **DM equation of state** is constrained in 8 redshift bins throughout cosmic history between $z=10^5$ and $z=0$ with **Planck** likelihood + BAO or HST prior: strongest constraints in the pre-recombination universe and **consistent with $w=0$ (CDM) at all times**.

- Derived constraints on **abundance DM**: it is non-negative at all times and nearly as strongly constrained at matter-radiation equality as the CDM abundance.

- Expect our constraints on $w(a)$ to be **valid for any alternative to CDM**.

Ongoing

- Exploring **nonlinear regime** with extensions of GDM. Halo model construction shows that constraints are robust. Apply to WiggleZ, CFHTLenS, Ly-α
- Add neutrino mass as free parameter
- Forecasts for combination of Euclid-like data combined with Planck CMB
- Constrain **scale and time dependent sound speed and viscosity**. Constrain isocurvature modes.

Kopp et al, 1605.00649
Thomas et al, 1601.05097
Kopp et al, 1802.09541
Thomas, Markovic et al, 180x.xxxxx
2) **Parametrized Post Friedmann**

Linear scalar perturbations

Skordis, PRD 79, 2009

1. Correct number of **time derivatives** in constraint Eqs.

2. Modification should lead to **gauge invariant field Eqs.**

3. Satisfy linearized **Bianchi identity** (such that $\nabla_\mu T^{\mu \nu} = 0$)

 - Full **control** of number of propagating dof
 (connection to non-perturbative parent theory)
 - **Consistently implement numerics** in any gauge
 - **Reduces number of free parameters** to two, if number of extra d.o.f is zero. $P_0(k, \tau), P_1(k, \tau)$
PPF without extra d.o.f.

CDM Background $w=0$

- We assume a CDM background: effective equation of state of this (tentative) modification of gravity is $w=0$.

- Question: can we choose $P_0(k, \tau), P_1(k, \tau)$ to exactly mimic CDM perturbatively?

Yes we can!

\[
P_{0}^{\text{cdm}}(\tau, k) = - \frac{9 \Omega_X}{2} \frac{\mathcal{H} \Theta_{\text{cdm}}}{\dot{\Phi}} \bigg|_{\text{GR+cdm}}
\]

\[
P_{1}^{\text{cdm}}(\tau, k) = - \frac{3 \Omega_X}{2} \frac{\Delta_{\text{rest frame}}}{\dot{\Phi}} \bigg|_{\text{GR+cdm}}
\]

"Parameters"?

should be solution-independent

used in GR+PPF without CDM
determined from GR+CDM without PPF
PPF: CMB

Based on a modified CLASS code Lesgourgues 2011

Characteristic effect of CDM: even-odd asymmetry of the peaks disappears.

Kopp et al, 180x.xxxx
PPF: CMB

Based on a modified CLASS code Lesgourgues 2011

Potential freeze, but too low amplitude.
Non-oscillatory source missing.

Characteristic effect of CDM: even-odd asymmetry of the peaks disappears.

Kopp et al, 180x.xxxxx
PPF: CMB

Based on a modified CLASS code Lesgourgues 2011

Potential freeze, but too low amplitude.
Non-oscillatory source missing.

Characteristic effect of CDM: even-odd asymmetry of the peaks disappears.

Modified gravity without extra d.o.f. cannot fit CMB

(assumptions: non-linearities negligible, conservation of matter energy-momentum, adiabatic initial conditions)
Summary (PPF)

• ‘Parametrized Post Friedmann’ PPF is a flexible framework that allows to test the dark matter paradigm beyond the fluid picture if one replaces CDM in linear perturbation theory.

• Without adding new degrees of freedom, modified gravity cannot fit the CMB without fine tuning.

Ongoing

• Allow 1 extra S0(3)-scalar perturbative d.o.f, but impose spatial locality: 5 free purely time-dependent functions.

• Find useful parametrizations and constrain with CMB.

Skordis, 0806.1238 (2009)
Baker et al, 1209.2117
Kopp et al, 180x.xxxxx