Testing the weak equivalence principle in the Stanford 10-meter tower

Rencontres de Moriond

Jason Hogan
Stanford University
March 26, 2017
Equivalence Principle

Bodies fall at the same rate, independent of composition

\[\eta = \frac{\Delta a}{\bar{a}} \]

Why test the EP?
- Foundation of General Relativity
- Quantum theory of gravity (?)

Torsion balance
(University of Washington)

Lunar Laser Ranging

C. Will, Living Reviews
New fundamental interactions

Yukawa type:

\[V(r) = -\frac{GM_1 M_2}{r} \left(1 + \alpha e^{-r/\lambda} \right) \]

New forces violate EP

Tests are sensitive to charge differences of new forces

Can also look for AC violations caused by proposed dark matter particle (P. Graham et al., arXiv:1512.06165).
Direct detection of dark matter

- Weakly coupled, light bosonic particles
- New fundamental interaction
- Acts like a classical field that exerts forces on matter:

\[F \propto g \sqrt{\rho_{DM}} \cos(m_{DM}t) \]

Force is oscillatory and equivalence-principle violating

Example:
Reach of searches for B-L-coupled vector DM

P. Graham et al., arXiv:1512.06165
Atom interference

Light interferometer

![Diagram of light interferometer](http://scienceblogs.com/principles/2013/10/22/quantum-erasure/)

Atom interferometer

![Diagram of atom interferometer](http://www.cobolt.se/interferometry.html)
Light Pulse Atom Interferometry

- Long duration
- Large wavepacket separation
10 meter scale atomic fountain

Atom Optics & Lattice Beam
Delivery Enclosure

Upper Detection Region

3 Layer Magnetic Shield
(<1 mG on axis)

Lower Detection Region

2D MOT Loading 3D

Rotation Compensation System

< 3 nK

1 cm

α_{87} α_{85}
Interference at long interrogation time

2T = 2.3 seconds
1.4 cm wavepacket separation

Wavepacket separation at apex (this data 50 nK)

Large momentum transfer demonstration

- Enhanced sensitivity
- Multiple pulses to transfer momentum
- Absolute AC Stark compensated Bragg pulses
- Long duration (>2 s)

Kovachy et al., Nature 2015
Interferometer ports

Interference causes population modulation between the ports

Kovachy et al., Nature 2015
Maximum observed contrast vs LMT order

- High contrast out to 90 $\hbar k$
- All data using $2T = 2.08$ s
- Limited by atom loss (inset)

Contrast metric corrects for technical noise in atom populations (using maximum likelihood analysis)

8 $\times 10^9$ rad/g for 90 $\hbar k$

Kovachy et al., *Nature* 2015
Gravity Gradiometer

Gradiometer baseline defined by atom recoil:

\[L = \left(N_1 \hbar k/m \right) \tau \]

(Insensitive to initial source position)

Gradiometer interference fringes

\[\Delta z = 4 \text{ cm} \]

10 \hbar k

\[\Delta z = 12 \text{ cm} \]

30 \hbar k

P. Asenbaum et al., arXiv:1610.03832 (PRL, to appear)
Phase shift from tidal force

Gradiometer response to 84 kg lead test mass

First observation of “tidal” phase shift:

\[\Delta \phi_{\text{tidal}} \approx \left(\frac{\hbar}{2m} \right) n^2 k^2 (\Delta T_{zz}) T^3 \]

Spacetime curvature across a single particle’s wavefunction

GR: gravity = curvature

Curvature-induced phase shifts have been described as first true manifestation of gravitation in a quantum system

P. Asenbaum et al., arXiv:1610.03832 (PRL, to appear)
Current Status

Dual species source, launched

\[^{85}\text{Rb} \quad F=3, \quad m_F=0 \]
\[^{87}\text{Rb} \quad F=2, \quad m_F=0 \]

10^5 atoms per launch, 40 nK radial

Initial operating parameters:

\[10 \, \hbar k \]
\[\delta \phi = 3 \, \text{mrad/shot (shot noise } 10^5 \text{ atoms)} \]
\[\sim 1000 \text{ shots/day} \]

Estimated initial sensitivity:

\[\frac{\delta g}{g} \sim \frac{\delta \phi}{k_{\text{eff}} g T^2} \]

\[\delta g < 10^{-13} \text{ g in a day} \]
Gravity gradient characterization

Measured gravity gradient vs launch height

$L = 10 \text{ cm baseline}$
10 hk
$T = 500 \text{ ms}$

Red: Gravity Model = preliminary reference Earth + cylindrical pit + lab basement

Gradiometer resolution: $3E$ per shot
Magnetic Field Control

Three layer mu-metal magnetic shield

Welded together and annealed

Residual field < 1 mG rms

Coriolis phase shift control

Interference patterns for rotating platform:

Tip-tilt mirror for rotation compensation

Measurement of rotation rate near null rotation operating point.

Dickerson, et al., PRL 111, 083001 (2013)
Collaborators

Rb Atom Interferometry
Mark Kasevich
Tim Kovachy
Chris Overstreet
Peter Asenbaum
Daniel Brown

Theory:
Peter Graham
Savas Dimopoulos
Surjeet Rajendran
Asimina Arvanitaki
Ken Van Tilburg