Special experiments on LISA Pathfinder's Inertial Sensors

Status of thermal and electrostatic experiments

Ferran Gibert
on behalf of the LISA Pathfinder's collaboration

52nd Rencontres de Moriond, La Thuile March 28th 2017
Experiments to characterise stray force noise sources on the LPF test masses:

1) Thermal experiments on the Inertial Sensors
 - Residual gas effects
 - Temperature gradient effects

2) Electrostatic experiments
 - TM charge
 - Stray voltages

3) Magnetic experiments
 - TM susceptibility & remnant magnetic moment

Credits: Airbus Defence and Space
Experiments to characterise stray force noise sources on the LPF test masses:

1) Thermal experiments on the Inertial Sensors
 - Residual gas effects
 - Temperature gradient effects

2) Electrostatic experiments
 - TM charge
 - Stray voltages

3) Magnetic experiments
 - TM susceptibility & remnant magnetic moment
Back to Δg: How about white noise?

- LPF first results: *PRL 116, 231101 (2016)*

White noise: is it *Brownian noise* from residual gas motion in the Inertial Sensors?

$$S_{\Delta g, Brw} = \frac{\rho (P_1 + P_2)}{m^2} s^2 \sqrt{\frac{512 m_0 k_B T}{\pi}} \left(1 + \frac{\pi}{8}\right)$$
The LTP Inertial Sensors

- Inertial Sensors placed inside Vacuum Enclosures
- Vacuum Enclosures sealed on ground before integration to satellite
- Opened to space since TM decaging once in L1 (2 Feb 2016)
- Since then, pressure expected to decay with $\frac{1}{(t-t_v)^p}$

\rightarrow Typical **outgassing** decay for vented systems

$$Q(t, T) = \sum_{i=1}^{N} Q_{i0} e^{-\frac{\Theta_i}{T}} \frac{Q_{\text{eff}}}{(t-t_v)^p} e^{-\frac{\Theta_{\text{eff}}}{T}}$$

$$P(t, T) = \frac{Q(t, T)}{C_{\text{vent}}} = \frac{Q_{\text{eff}}}{C_{\text{vent}}} \frac{e^{-\frac{\Theta_{\text{eff}}}{T}}}{(t-t_v)^p}$$

$$S_{\Delta g, \text{Brw}} \approx \frac{S_{\text{eff}}}{(t-t_v)^p} e^{-\frac{\Theta_{\text{eff}}}{T}}$$
Brownian noise evidence (1)

- White noise roughly estimated by averaging Δg PSD between 3-8 mHz
- Decaying with time as $\frac{1}{(t-t_v)^p}$ & strongly temperature dependent

PRELIMINARY!
Brownian noise evidence (2)

- Eventual “DC” pressure gradients across the masses could decay with same time constant.
- White noise decay correlated with Δg-DC → both caused by same outgassing sources?

→ Series of thermal experiments to estimate pressure via temperature gradient effects.

PRELIMINARY!
Temperature gradient effects in the Inertial Sensor

- Temperature gradients (ΔT) induce net forces on the masses through different effects:

 \rightarrow **Radiation pressure**: pressure exerted by electromagnetic radiation from the surfaces

 \[F_{RP} = k_{RP} T^3 \Delta T \]

 \rightarrow **Radiometric effect**: significant in rarefied atmospheres where the particle mean free path is longer than the characteristic size of the system, hence particles bounce directly between surfaces

 \[F_{RM} = k_{RM} \frac{P}{T} \Delta T \]

 \rightarrow **Asymmetric outgassing**: forces exerted by the fluxes of particles emitted from the surfaces

 \[F_{OG} = k_{OG} \frac{\Theta_{eff} e^{-\Theta_{eff}/T}}{T^2} \Delta T \]

- Expected contributions (via simulations & on-ground tests, *Phys. Rev. D* 76, 102003)

\[
F = \left[23 \frac{pN}{K} \left(\frac{P}{10^{-5} \text{ Pa}} \right) \frac{293 \text{ K}}{T_0} + 9 \frac{pN}{K} \left(\frac{T_0}{293 \text{ K}} \right)^3 + 40 \frac{pN}{K} \left(\frac{Q_0}{1.4 \text{ nJ/s}} \right) \left(\frac{\Theta}{3 \times 10^4 \text{ K}} \right) \left(\frac{293 \text{ K}}{T_0} \right)^2 \right] \Delta T
\]

- Inertial Sensors equipped with heaters and sensors as part of Thermal Diagnostics Subsystem
Thermal diagnostics subsystem

- Temperature sensors: NTC thermistors with $10^{-5} \text{ K/sqrt(Hz)}$ sensitivity
- Heaters: able to apply custom signals for characterization purposes
- Also thermal items on the Optical Bench, Optical Window & Struts
ΔT Thermal experiments in flight

- Several temperature gradient experiments performed during the mission

\[\Delta T_x = \frac{(T_3 + T_4) - (T_1 + T_2)}{2} \]

PRELIMINARY!
Thermal coefficients

- Thermal coefficient defined as $\alpha = \frac{F_{\text{mod}}}{\Delta T_{\text{mod}}}$
 - Couplings of $< 70 \text{ pN/K}$, time decay consistent with $\frac{1}{(t-t_0)^p}$
 - $\frac{d\alpha}{dT}$ also decaying with time due to outgassing decrease.
Brownian estimates [Preliminary]

- Estimated current pressure <5 μPa (at the beginning >20 μPa)
 - Assumed spices: water, activation energy of 8000-10000K
 - On-going analysis

\[P \approx 5 \times 10^{-9} \text{ Pa} \text{ (at the beginning } >2 \times 10^{-7} \text{ Pa)} \]

Comment:
- Quite a good agreement
- Not perfectly overlapping, slightly underestimating the white noise level
- Need to improve the \(P \) estimation (currently working on corrections for the \(\frac{dF}{d\Delta T} \))

The recent change of temperature provides a good confirmation case.
Electrostatic experiments

- Main electrostatic interaction in the inertial sensors:

\[F_x(q) = -\frac{q}{C_T} \left| \frac{\partial C_x}{\partial x} \right| \Delta x \]

- Two noise contributions

1. TM charge fluctuations \(S_q \) coupling with existing \(\Delta_x \)
 - Caused by high-energy cosmic rays and solar energetic particles

2. Stray voltage fluctuations \(S_{\Delta x} \) coupling with residual charge \(q \)
 - Caused by surface patch potentials and GRS electronics noise

- Experiments performed to estimate both contributions to LTP budget and minimise their impact.

- Main results to be published soon (arxiv:1702.04633)
Electrostatic experiments: charge estimate

- TM charge estimate by modulating voltage across the masses:

\[q = \left[\frac{C_T}{-4\left| \frac{\partial C}{\partial x} \right|} \right] \frac{F_{\text{mod}}}{V_{\text{mod}}} \]

- Measurements performed at both masses simultaneously by using different \(f_{\text{mod}} \)

- Net charge increments of +22.9e/s (TM1) and +24.5e/s TM2 (control by means of UV lamps)

- PSD \(\sim 1/f^2 \) & absence of correlation in the charge time-series of the 2 TMS: consistent with the model of independent Poissonian processes

- Noise stationary over months
Residual stray voltages across the masses (Δ_x) are calculated by estimating slope $\frac{\partial F}{\partial q}$.

- Measured residual stray voltages of $\Delta_x \sim 20\text{mV}$ (TM1) and $<1\text{mV}$ (TM2).
- Small variation along 1 year of operations.
- Easily compensated to $\sim 1\text{mV}$.
Overview

- White noise on LTP central sensitivity noise curve is associated to Brownian motion of the residual gas inside the Inertial Sensors
- Temperature gradient modulation experiments allow to estimate pressure inside the Inertial Sensors
- Dedicated charge and stray voltage experiments allow to characterise noise contribution from random charge and stray voltages and to minimise their impact to the noise budget
- More experiments still going on...
Thanks for your attention
Bibliography

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.76.102003