Belle II news on charm and B to charm

56th Rencontres de Moriond 2022
Electroweak Interactions & Unified Theories
March 17, 2022

Riccardo Manfredi (University and INFN Trieste)
on behalf of the Belle II collaboration

riccardo.manfredi@ts.infn.it
Beauty and charm factory

Energy-asymmetric e^+e^- collisions at the $\Upsilon(4S)$. CM boosted with $\beta\gamma \sim 0.28$.
Final focus magnets to
- squeeze vertical size to ~ 50 nm
- large crossing angle of ~ 83 mrad
\Rightarrow design 30x intensity wrt previous B-factories

Compared to Belle
- much improved vertexing
- greater acceptance
\Rightarrow similar performance with expected 20x bkg

Large clean samples of B and D mesons. Current dataset of ~ 265 fb$^{-1}$.

Today:
- Λ_{c^+} (new for Moriond), D^0, D^+ lifetimes
- CKM γ from Belle + Belle II combined data (first combined measurement)
Charm physics at Belle II

Program: CPV measurements, searches for rare and forbidden decays. Focus on final states with neutrals or missing E.

Lifetimes: high-precision measurements probe vertexing capabilities and give insight of systematic effects for future time-dependent analyses.

Belle II/SuperKEKB
- small interaction region allows stringent constraints on production vertex position
- new vertex detector improves 2x resolution wrt Belle and BaBar
Measuring decay time

Compute decay time t and its uncertainty σ_t from the production and decay vertices and momentum:

$$ t = \frac{m}{p^2 \cdot c} \overrightarrow{d} \cdot \overrightarrow{p} $$

Selection explicitly checked to be unbiased. Controlling systematics is crucial.

$\sim 171k \ D^+ \rightarrow (D^0 \rightarrow K^-\pi^+)\pi^+$

$\sim 59k \ D^+ \rightarrow (D^+ \rightarrow K^-\pi^+\pi^+)\pi^0$

$\sim 152k \ \Lambda_c^+ \rightarrow pK^-\pi^+$

New for Moriond
Decay-time fits

2D fit of unbinned $t - \sigma_t$ distributions.

Signal: exponential convoluted with resolution (single or double Gaussian) determined directly in data.

Background: fit sidebands simultaneously.

All shape parameters free.

Blind analyses.
Misalignment: affects decay-length scale. Estimated using simulations of various misaligned configurations.

Background: account for simulation not well reproducing decay-time distributions.

Resolution: account for neglected correlations between t and σ_t.

$\Xi_c \rightarrow \Lambda_c \pi$ background can introduce biases. Unaccounted for in previous measurement. Significant uncertainty based on pheno expectations of Ξ_c rate. May reduce with dedicated data-driven studies.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (fs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$D^0 \rightarrow K^- \pi^+$</td>
</tr>
<tr>
<td>Statistical</td>
<td>1.1</td>
</tr>
<tr>
<td>Resolution model</td>
<td>0.16</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>0.24</td>
</tr>
<tr>
<td>Detector alignment</td>
<td>0.72</td>
</tr>
<tr>
<td>Momentum scale</td>
<td>0.19</td>
</tr>
<tr>
<td>Total systematic</td>
<td>0.8</td>
</tr>
</tbody>
</table>

$\Lambda_c^+ \rightarrow pK^- \pi^+$ (preliminary)

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (fs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution model</td>
<td>0.46</td>
</tr>
<tr>
<td>Background contamination</td>
<td>0.20</td>
</tr>
<tr>
<td>Imperfect alignments</td>
<td>0.46</td>
</tr>
<tr>
<td>Momentum scale correction</td>
<td>0.09</td>
</tr>
<tr>
<td>Input charm masses</td>
<td>0.01</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>0.69</td>
</tr>
<tr>
<td>Contamination from $\Xi_c \rightarrow \Lambda_c \pi$</td>
<td>- 1.4</td>
</tr>
</tbody>
</table>
World-leading charm lifetimes

\[\tau(D^0) = (410.5 \pm 1.1 \pm 0.8) \text{ fs} \]
\[\tau(D^+) = (1030.4 \pm 4.7 \pm 3.1) \text{ fs} \]
\[\tau(\Lambda_c^+) = (204.1 \pm 0.8 \pm 0.7 - 1.4) \text{ fs} \]

Belle II

World average

\[\tau(D^0) = (410.1 \pm 1.5) \text{ fs} \]
\[\tau(D^+) = (1040 \pm 7) \text{ fs} \]
\[\tau(\Lambda_c^+) = (202.4 \pm 3.1) \text{ fs} \]

World’s best. Establish excellent detector performances (see Thibaud’s talk for more on vertexing). \(\Lambda_c \) benchmarks future baryon lifetime measurements.

PRL 127, 211801 (2021)
Measurement of γ
\(\gamma \) from \(B \to DK \) decays

Phase between \(b \to c \) and \(b \to u \).

Tree-dominated: precise SM reference.

Access with interfering decays to same final states. Direct determination WA: \textbf{HFLAV}

\[\gamma[^{\circ}] = 65.9 \pm 3.3 \]

Self-conj. \(D^0 \) final states \(K_S^0 \pi \pi, K_S^0 K K \).

\(D \) Dalitz plot binning eliminates amplitude-model uncertainties.

\[N_{i}^{\pm} = h_{B}^{\pm}\left[F_i + r_B^{2}\bar{F}_i + 2\sqrt{F_i\bar{F}_i}(c_i x_{\pm} + s_i y_{\pm})\right] \]

\((x_{\pm}, y_{\pm}) = r_B \left(\cos(\gamma + \delta_B), \sin(\gamma + \delta_B) \right) \)

\(c_i, s_i: D^0 - \bar{D}^0 \) strong phase differences (inputs from BES III/CLEO)

\(F_i: \) fraction of \(D \) decays to \(i \)-th bin
Sample selection

128 fb\(^{-1}\) Belle II + 711 fb\(^{-1}\) Belle.

Improvements wrt previous Belle:
- \(K_S^0\) selection
- background suppression
- signal determination
- more statistics from \(D^0 \rightarrow K_S^0 KK\)
- new inputs from BESIII

Suppress “continuum” \((e^+e^- \rightarrow q\bar{q})\):
input event shape, angular distributions,
\(B\) vertex and flavor tagging in MVA.

Additional discriminating variable for 2D \(\Delta E\) — MVA signal fit
Signal yield determination

\[D^0 \rightarrow K_S^0 \pi^+ \pi^- \]

PID cut isolates \(B \rightarrow D K \) candidates: \(\sim 8\% \) mis-ID \(B \rightarrow D \pi \) contamination.

\(K^- \pi \) efficiencies and mis-ID rates directly from data with simultaneous fit of disjoint \(B \rightarrow D K \) and \(B \rightarrow D \pi \) samples.

Belle:
\[K_S^0 \pi \pi: 1467 \pm 53 \]
\[K_S^0 K K: 194 \pm 17 \]

Belle II:
\[K_S^0 \pi \pi: 280 \pm 21 \]
\[K_S^0 K K: 34 \pm 7 \]
Determination of CPV parameters

Simultaneous fit in each Dalitz bin to extract CP observables \((x_\pm, y_\pm)\). Mis-ID rate fixed from previous unbinned fit.

Extract \(F_i\) parameters directly in data to cancel the associated systematics and reduce reliance on simulation.

\[
x_+^{DK} = -0.113 \pm 0.032
\]
\[
y_+^{DK} = -0.046 \pm 0.042
\]
\[
x_-^{DK} = +0.092 \pm 0.033
\]
\[
y_-^{DK} = +0.100 \pm 0.042
\]
Results

\[\delta_B[^\circ] = 124.8 \pm 12.9 \text{ (stat)} \pm 0.5 \text{ (syst)} \pm 1.7 \text{ (ext)} \]

\[r_B^{DK} = 0.129 \pm 0.024 \text{ (stat)} \pm 0.001 \text{ (syst)} \pm 0.002 \text{ (ext)} \]

\[\gamma[^\circ] = 78.4 \pm 11.4 \text{ (stat)} \pm 0.5 \text{ (syst)} \pm 1.0 \text{ (ext)} \]

Improvements wrt previous Belle equivalent to doubling statistics.

Latest inputs on strong-phase from BESIII highly reduces systematics.

Expect \(< 3[^\circ]\) uncertainty with 10 \(\text{ab}^{-1}\), including also more \(D\) final state. Uncertainty will still be dominated by the size of the data sample.
Exploit new improved detector: first high-precision ($O(10^{-3})$) results
- world’s best D lifetimes, establishes excellent vertexing
- world’s best Λ_c lifetime, benchmark for future baryon lifetimes (first Belle II)

Combine with Belle data to be impactful on flavor measurements with early data. Sensitivity improved in addition to larger data set:
- most precise CKM γ determination from B-factories (first B + BII)

Competitive physics results even with initial data sets!
backup
Projections of integrated luminosity delivered by SuperKEKB to Belle II

Target scenario: extrapolation from 2021 run including expected improvements.

Base scenario: conservative extrapolation of SuperKEKB parameters from 2021 run.

• We start long shutdown I (LS I) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvements works of machine and detector.
• We resume physics running from Fall 2023.
• A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
• An LS2 for machine improvements could happen on the time frame of 2026-2027.
Performance overview

Strong charged particle identification. Good momentum resolution. High γ efficiency.

Flavor tagging efficiency comparable to Belle.
Fit of Belle data

\[D^0 \rightarrow K_S^0 \pi^+ \pi^- \]

\[D^0 \rightarrow K_S^0 K^+ K^- \]
CPV in $B \to D\pi$ decays

\[
\frac{N^+ - N^-}{N^+ + N^-} = \frac{N^+ - N^-}{N^+ + N^-} = \frac{N^+ - N^-}{N^+ + N^-}
\]

Belle II
\[
\int L \, dt = 128 \text{ fb}^{-1}
\]

Belle
\[
\int L \, dt = 711 \text{ fb}^{-1}
\]

$B^+ \to D\pi^+$

$K_S^0\pi\pi$

K_S^0KK