Consistent massive graviton on arbitrary background

Laura BERNARD

based on arXiv:1410.8302 + in prep., with C. Deffayet, A. Schmidt-May and M. von Strauss

Rencontres de Moriond - Gravitation 2015

22/03/2015

Fierz-Pauli theory (1939)

$$S_{h,m} = -\frac{1}{2}\bar{M}_h^2 \int d^4x \ h_{\mu\nu} \Big[\mathcal{E}^{\mu\nu\rho\sigma} + \frac{\bar{m}^2}{2} \left(g^{\rho\mu} g^{\sigma\nu} - g^{\mu\nu} g^{\rho\sigma} \right) \Big] h_{\rho\sigma}.$$

$$\delta \bar{E}_{\mu\nu} \equiv \mathcal{E}_{\mu\nu}{}^{\rho\sigma} h_{\rho\sigma} + \frac{\bar{m}^2}{2} \left(h_{\mu\nu} - h \, \eta_{\mu\nu} \right) = 0$$

- ▶ Field eqs. for a massive graviton that has 5 degrees of freedom.
- $\triangleright \partial^{\nu} \delta \bar{E}_{\mu\nu} \implies 4 \text{ vector constraints} : \partial^{\mu} h_{\mu\nu} \partial_{\nu} h = 0.$
- ▷ Taking another derivative : $2\partial^{\mu}\partial^{\nu}\delta\bar{E}_{\mu\nu} + \bar{m}^2\eta^{\mu\nu}\delta\bar{E}_{\mu\nu} = -\frac{3}{2}\bar{m}^4h$.
- \triangleright Scalar constraint |h = 0.|
- ▶ Only linear massive gravity theory free of ghost.

Non-linear massive gravity

Search for a non-linear massive gravity theory with the following properties:

- 1. is Lorentz invariant,
- 2. admits flat space-time as vacuum solution,
- 3. gives back Fierz-Pauli when expanded around Minkowski.

Non-linear massive gravity

Search for a non-linear massive gravity theory with the following properties:

- 1. is Lorentz invariant,
- 2. admits flat space-time as vacuum solution,
- 3. gives back Fierz-Pauli when expanded around Minkowski.

History

- ▶ van Dam, Veltman and Zakharov (vDVZ) discontinuity (1970): FP do not recover GR in the massless limit,
- ▶ Vainshtein mechanism (1972): screening mechanism to recover GR.
- ▶ Boulware Deser (BD) ghost (1972): a 6th dof reappear in any non-linear massive gravity theory.
- ▷ de Rham, Gabadadze and Tolley (dRGT) theory (2011): non-linear theory free of the BD ghost.

Laura BERNARD 22/03/2015

4 D > 4 B > 4 E > 4 E >

$$S = M_g^2 \int d^4x \sqrt{|g|} \left[R(g) - 2m^2 V(S; \beta_n) \right],$$

$$V(S; \beta_n) = \sum_{n=0}^{3} \beta_n e_n(S),$$

- $\qquad \qquad \triangleright \ \, \text{Square-root matrix} \, \, S^{\mu}_{\ \rho} S^{\rho}_{\ \nu} = g^{\mu\rho} f_{\rho\nu},$
- \triangleright $e_n(S)$ elementary symmetric polynomials :

$$e_0(S) = 1$$
, $e_1(S) = \text{Tr}[S]$, $e_2(S) = \frac{1}{2} \left(\text{Tr}[S]^2 - \text{Tr}[S^2] \right)$,
 $e_3(S) = \frac{1}{6} \left(\text{Tr}[S]^3 - 3\text{Tr}[S]\text{Tr}[S^2] + 2\text{Tr}[S^3] \right)$

◆□ → ◆□ → ◆■ → ● → りへで

$$S = M_g^2 \int d^4x \sqrt{|g|} \left[R(g) - 2m^2 V(S; \beta_n) \right],$$

$$V(S; \beta_n) = \sum_{n=0}^{3} \beta_n e_n(S),$$

- $\qquad \qquad \triangleright \ \, \text{Square-root matrix} \, \, S^{\mu}_{\ \ \rho} S^{\rho}_{\ \ \nu} = g^{\mu\rho} f_{\rho\nu},$
- $\triangleright e_n(S)$ elementary symmetric polynomials :

$$e_0(S) = 1$$
, $e_1(S) = \text{Tr}[S]$, $e_2(S) = \frac{1}{2} \left(\text{Tr}[S]^2 - \text{Tr}[S^2] \right)$,
 $e_3(S) = \frac{1}{6} \left(\text{Tr}[S]^3 - 3\text{Tr}[S]\text{Tr}[S^2] + 2\text{Tr}[S^3] \right)$

Absence of ghost

- \triangleright in the decoupling limit (dRGT) for $f_{\mu\nu} = \eta_{\mu\nu}$,
- ▷ for the full theory (Hassan, Rosen),
- ▶ using vierbeins.

◆□▶ ◆圖▶ ◆臺▶ ★臺▶ 臺 ∽9<</p>

$$S = M_g^2 \int d^4x \sqrt{|g|} \Big[R(g) - 2m^2 V(S; \beta_n) \Big],$$

$$V(S; \beta_n) = \sum_{n=0}^{3} \beta_n e_n(S)$$
 and $S^{\mu}_{\ \nu} = [\sqrt{g^{-1}f}]^{\mu}_{\ \nu}$.

Field equations

$$E_{\mu\nu} \equiv \mathcal{G}_{\mu\nu} + m^2 V_{\mu\nu} = 0 \,,$$

$$\mathcal{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R, \qquad V_{\mu\nu} \equiv \frac{-2}{\sqrt{|g|}} \frac{\delta(\sqrt{|g|V})}{\delta g^{\mu\nu}}.$$

$$S = M_g^2 \int \mathrm{d}^4 x \sqrt{|g|} \Big[R(g) - 2m^2 V\left(S; \beta_n\right) \Big],$$

$$V(S; \beta_n) = \sum_{n=0}^{3} \beta_n e_n(S)$$
 and $S^{\mu}_{\ \nu} = [\sqrt{g^{-1}f}]^{\mu}_{\ \nu}$.

Field equations

$$E_{\mu\nu} \equiv \mathcal{G}_{\mu\nu} + m^2 V_{\mu\nu} = 0 \,,$$

$$\mathcal{G}_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R, \qquad V_{\mu\nu} \equiv \frac{-2}{\sqrt{|g|}} \frac{\delta(\sqrt{|g|}V)}{\delta g^{\mu\nu}}.$$

Linearized field equations around a background solution

$$\delta E_{\mu\nu} \equiv \delta \mathcal{G}_{\mu\nu} + m^2 \delta V_{\mu\nu} \equiv \left[\tilde{\mathcal{E}}_{\mu\nu}{}^{\rho\sigma} + m^2 \,\mathcal{M}_{\mu\nu}{}^{\rho\sigma} \right] h_{\rho\sigma} = 0 \,,$$

◆ロト ◆部 → ◆注 > ◆注 > 注 の Q (や)

Variation of the matrix S - Sylvester equation

Cayley-Hamilton theorem

$$\begin{split} S^4 - e_1 S^3 + e_2 S^2 - e_3 S + e_4 \mathbb{1} &= 0 \,. \\ \Big[e_3 \mathbb{1} + e_1 S^2 \Big] \delta S &= F \Big(\delta S^2 \Big) \,. \end{split}$$

▶ Solution for δS iff $\mathbb{X} \equiv e_3 \mathbb{1} + e_1 S^2$ is invertible.

Sylvester equation

$$S^{\mu}_{\ \nu} (\delta S)^{\nu}_{\ \sigma} + (\delta S)^{\mu}_{\ \nu} S^{\nu}_{\ \sigma} = \delta [S^2]^{\mu}_{\ \sigma}.$$

▶ Explicit solution for δS iff S and -S do not have common eigenvalues \iff det(\mathbb{X}) $\neq 0$.

◆ロ > ◆団 > ◆ 種 > ◆ 種 > ■ ● り へ ②

The beta 1 model

Setting $\beta_2 = \beta_3 = 0$ while keeping β_0 , $\beta_1 \neq 0$ and $f_{\mu\nu}$ arbitrary.

Field equations

$$\mathcal{G}_{\mu\nu} + m^2 \Big[\beta_0 g_{\mu\nu} + \beta_1 g_{\mu\rho} \Big(e_1(S) \delta^{\rho}_{\nu} - S^{\rho}_{\nu} \Big) \Big] = 0,$$

Solve for $S^{\mu}_{\ \nu}$:

$$S^{\rho}_{\ \nu} = \frac{1}{\beta_1 m^2} \left[R^{\rho}_{\ \nu} - \frac{1}{6} \delta^{\rho}_{\nu} R - \frac{m^2 \beta_0}{3} \, \delta^{\rho}_{\nu} \right] \, . \label{eq:S_phi}$$

- ▶ Only possible in the β_1 model.
- ightharpoonup Can be used to eliminate any occurrences of S in the linearized field equations.

4□ > 4□ > 4∃ > 4∃ > ∃ 900

Linearized field equations around arbitrary background

$$\delta E_{\mu\nu} \equiv \delta \mathcal{G}_{\mu\nu} + m^2 \delta V_{\mu\nu} \equiv \left[\tilde{\mathcal{E}}_{\mu\nu}{}^{\rho\sigma} + m^2 \,\mathcal{M}_{\mu\nu}{}^{\rho\sigma} \right] h_{\rho\sigma} = 0 \,,$$

- \triangleright contains both the curvature of $g_{\mu\nu}$ and the matrix S^{μ}_{ν} ,
- ▶ In the β_1 model, we can express everything as a function of $g_{\mu\nu}$ and its curvature.
- ▶ We now take these equations as our starting point.

Linearized field equations around arbitrary background

$$\delta E_{\mu\nu} \equiv \delta \mathcal{G}_{\mu\nu} + m^2 \delta V_{\mu\nu} \equiv \left[\tilde{\mathcal{E}}_{\mu\nu}{}^{\rho\sigma} + m^2 \,\mathcal{M}_{\mu\nu}{}^{\rho\sigma} \right] h_{\rho\sigma} = 0 \,,$$

- \triangleright contains both the curvature of $g_{\mu\nu}$ and the matrix S^{μ}_{ν} ,
- \triangleright In the eta_1 model, we can express everything as a function of $g_{\mu\nu}$ and its curvature.
- > We now take these equations as our starting point.

Counting the degrees of freedom

- \triangleright 4 vector constraints : $\nabla^{\nu} \delta E_{\mu\nu} = 0$
- \triangleright Scalar constraint : unlike in the F-P theory, it cannot be obtained from a linear combination of $g^{\mu\nu}\delta E_{\mu\nu}$ and $\nabla^{\mu}\nabla^{\nu}\delta E_{\mu\nu}$.

4 D > 4 B > 4 B > 4 B > 9 Q @

Search for a scalar constraint

All possible ways of tracing $\delta E_{\mu\nu}$ or the derivative of its divergence with S^{μ}_{ν} :

$$\begin{split} & \Phi_i \equiv [S^i]^{\mu\nu} \, \delta E_{\mu\nu} \,, \qquad 0 \leq i \leq 3 \\ & \Psi_i \equiv [S^i]^{\mu\nu} \nabla_\nu \nabla^\lambda \, \delta E_{\lambda\mu} \qquad 0 \leq i \leq 3 \,. \end{split}$$

Find a linear combination of these 8 scalars for which the 2nd derivative terms vanish:

$$\sum_{i=0}^{3} \left(u_i \, \Phi_i + v_i \, \Psi_i \right) \sim 0,$$

More details on the search for a scalar constraint

$$\Phi_i \equiv [S^i]^{\mu\nu} \, \delta E_{\mu\nu} \,, \quad \Psi_i \equiv [S^i]^{\mu\nu} \nabla_{\nu} \nabla^{\lambda} \, \delta E_{\lambda\mu} \qquad 0 \le i \le 3 \,.$$

Find a linear combination of these 8 scalars for which the 2nd derivative terms vanish: $\sum_{i=0}^{3} (u_i \Phi_i + v_i \Psi_i) \sim 0$.

$$\sum_{i=0}^{3} (u_i \, \Phi_i + v_i \, \Psi_i) \sim \sum_{i=1}^{26} \alpha_i \aleph_i = 0,$$

$$\aleph_i = \{\nabla_\rho \nabla_\sigma \, h^{\rho\sigma}, ..., [S^3]^{\rho\sigma} \, [S^3]^{\mu\nu} \, \nabla_\rho \nabla_\sigma \, h_{\mu\nu} \}$$

- $\alpha_i = 0 : 26$ equations for 7 unknowns $\{u_i, v_i\}$, only the trivial solution.
- ▶ All the \aleph_i are not all independent from each other: non trivial identities (**syzygies**) linking them \Longrightarrow Reduces the number of equations to be solved to 7.

More details on the search for a scalar constraint

$$\Phi_i \equiv [S^i]^{\mu\nu} \, \delta E_{\mu\nu} \,, \quad \Psi_i \equiv [S^i]^{\mu\nu} \nabla_{\nu} \nabla^{\lambda} \, \delta E_{\lambda\mu} \qquad 0 \le i \le 3 \,.$$

Find a linear combination of these 8 scalars for which the 2nd derivative terms vanish: $\sum_{i=0}^{3} (u_i \Phi_i + v_i \Psi_i) \sim 0$.

$$\sum_{i=0}^{3} (u_i \, \Phi_i + v_i \, \Psi_i) \sim \sum_{i=1}^{26} \alpha_i \aleph_i = 0,$$

$$\aleph_i = \{ \nabla_{\sigma} \nabla_{\sigma} \, h^{\rho \sigma}, \dots, [S^3]^{\rho \sigma} \, [S^3]^{\mu \nu} \, \nabla_{\sigma} \nabla_{\sigma} \, h_{\mu \nu} \}$$

- $\alpha_i = 0 : 26$ equations for 7 unknowns $\{u_i, v_i\}$, only the trivial solution.
- ▶ All the \aleph_i are not all independent from each other: non trivial identities (**syzygies**) linking them \Longrightarrow Reduces the number of equations to be solved to 7.

The fifth scalar constraint

Laura BERNARD

$$-\frac{m^2 \beta_1 e_4}{2} \Phi_0 - e_3 \Psi_0 + e_2 \Psi_1 - e_1 \Psi_2 + \Psi_3 = 0.$$

Applications

▶ In the flat space-time limit we recover h = 0.

Einstein space-times

$$\rhd \ R_{\mu\nu} = \Lambda g_{\mu\nu} \implies S^{\rho}_{\ \nu} = -\frac{\tilde{\beta}_0}{3\beta_1} \delta^{\rho}_{\nu} \ , \quad \tilde{\beta_0} = \beta_0 - \frac{\Lambda}{m^2}$$

▶ The scalar constraint is

$$\boxed{\frac{\tilde{\beta}_0^3}{54\beta_1^3} \left(\nabla^{\mu} \nabla^{\nu} \delta E_{\mu\nu} - \frac{m^2 \tilde{\beta}_0}{6} g^{\mu\nu} \delta E_{\mu\nu} \right) = -\frac{m^4 \tilde{\beta}_0^5}{648\beta_1^3} h \left(1 + \frac{2\Lambda}{\tilde{\beta}_0 m^2} \right) = 0}$$

Conclusion

- \triangleright Theory for a massive graviton propagating in a single arbitrary background metric (β_1 model).
- ▷ Five covariant constraints for massive gravity in a metric formulation.
- \triangleright Need to find the constraints in the full model (not only β_1).