

Robustness of primordial tensor mode predictions

with J. Gleyzes, J. Noreña and F. Vernizzi, 1407.8439 (PRL)

with L. Bordin, M. Mirbabayi and J. Noreña, in progress

Moriond - March 24th 2016

Compare with scalars

- It is easy to play with scalar perturbations:
 - I. choice of potential
 - 2. many scalars (effects on late Universe)
 - 3. speed of propagation c_S

Room for alternatives to inflation

Compare with scalars

- It is easy to play with scalar perturbations:
 - I. choice of potential
 - 2. many scalars (effects on late Universe)
 - 3. speed of propagation c_S

Room for alternatives to inflation

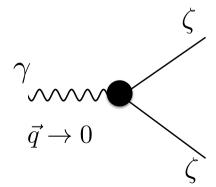
• It is not easy to play with gravity! GWs are direct probes of H

Two observables

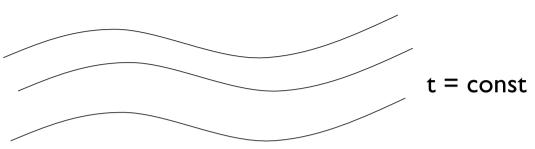
I. Tensor power spectrum: $\Delta_h^2(k) = \frac{2}{\pi^2} \frac{H^2}{M_{\rm pl}^2}$

Can we modify it by non-trivial speed c_T ?

2. Consistency relation with soft tensor mode: $\lim_{\vec{q}\to 0}\langle \gamma_{\vec{q}} \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle$



Effective field theory of inflation:



Parametrize the most general dynamics compatible with symmetries

Cheung, PC, Fitzpatrick, Kaplan, Senatore 07

$$S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} \left[R - 2(\dot{H} + 3H^2) + 2\dot{H}g^{00} - \left(1 - c_T^{-2}(t)\right) \left(\delta K_{\mu\nu} \delta K^{\mu\nu} - \delta K^2\right) \right]$$

$$K_{ij} = \frac{1}{2N} (\dot{h}_{ij} - \nabla_i N_j - \nabla_j N_i)$$

$$S_{\gamma\gamma} = \frac{M_{\rm Pl}^2}{8} \int d^4x a^3 c_T^{-2} \left[\dot{\gamma}_{ij}^2 - c_T^2 \frac{(\partial_k \gamma_{ij})^2}{a^2} \right] \longrightarrow \Delta_T^2 = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \cdot \frac{1}{c_T(t)}$$

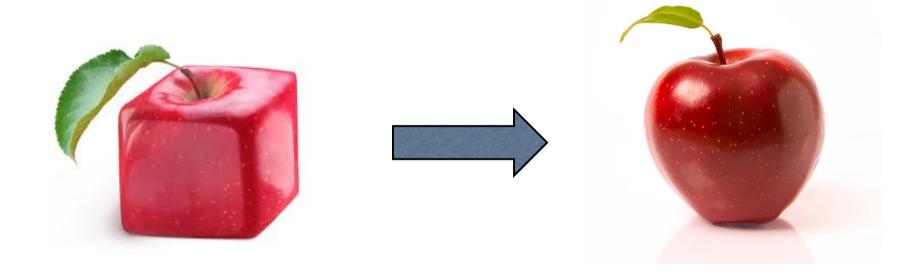
$$\Delta_T^2 = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \cdot \frac{1}{c_T(t)}$$

- Scale invariance without H ~ const.
- P_T does not measure energy scale
 - $n_T \neq 2\dot{H}/H^2 < 0$

$$\Delta_T^2 = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \cdot \frac{1}{c_T(t)}$$

- Scale invariance without H ~ const.
- P_T does not measure energy scale

•
$$n_T \neq 2\dot{H}/H^2 < 0$$



$$\Delta_T^2 = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \cdot \frac{1}{c_T(t)}$$

- Scale invariance without H ~ const.
- P_T does not measure energy scale
- $n_T \neq 2\dot{H}/H^2 < 0$

Disformal transformation:

$$g_{\mu\nu} \mapsto g_{\mu\nu} - (1 - c_T^2) \partial_{\mu} \phi \partial_{\nu} \phi / (\partial \phi)^2$$

$$g_{\mu\nu} \mapsto c_T^{-1}(t) g_{\mu\nu}$$

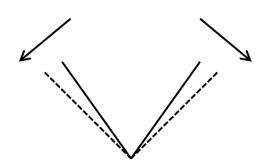
$$\tilde{t} \equiv \int c_T^{1/2}(t) dt$$
, $\tilde{a}(\tilde{t}) \equiv c_T^{-1/2} a(t)$

$$\dot{c}_T = 0$$

$$\int d^4x \sqrt{-\tilde{g}} \frac{M_{\rm Pl}^2}{2} \left\{ \tilde{R} - 2(\dot{\tilde{H}} + 3\tilde{H}^2) + 2\dot{\tilde{H}}\tilde{g}^{00} + 2(1 - c_T^2)\dot{\tilde{H}} \times (1 - \sqrt{-\tilde{g}^{00}})^2 \right\}$$

$$\tilde{c}_s = 1/c_T$$

NG in original frame beyond decoupling!



Disformed away

$$S = \int d\tilde{t}d^3x \sqrt{-\tilde{g}} \frac{M_{\rm Pl}^2}{2} \left\{ \tilde{R} - 2(\dot{\tilde{H}} + 3\tilde{H}^2) + 2\dot{\tilde{H}}\tilde{g}^{00} + \left[2(1 - c_T^2)\dot{\tilde{H}} - \frac{3}{2}\alpha^2 - c_T^2 \left(\dot{\alpha} + \tilde{H}\alpha + \frac{1}{2}\alpha^2 \right) \right] \times \left(1 - \sqrt{-\tilde{g}^{00}} \right)^2 + 2\alpha \delta \tilde{K} \left(1 - \sqrt{-\tilde{g}^{00}} \right) \right\}$$

$$\alpha \equiv \dot{c_T}/c_T$$

Blue tilt using $\mathbf{c_T}$ \rightarrow Stable $\mathring{\tilde{H}}>0$ (NEC violation) with operator $\delta N\delta K$

PC, Luty, Nicolis, Senatore 06

No loss of generality in taking $c_T = I$ (even multifield or alternatives to inflation)

- Exceptions: I. Different symmetry pattern (solid inflation, gauge-flation...)
 - e.g Cannone, Tasinato, Wands 14
 - 2. GWs not produced as vacuum fluctuations

Domcke + Ben-Dayan talks

Spectrum and 3pf corrections

Corrections to spectrum start with 3 derivative operators:

$$\varepsilon^{ijk}\partial_{i}\dot{\gamma}_{jl}\dot{\gamma}_{lk} , \qquad \varepsilon^{ijk}\partial_{i}\partial_{m}\gamma_{jl}\partial_{m}\gamma_{lk}$$

$$4\int d^{4}x \,\varepsilon^{0ijk}\nabla_{i}\delta K_{jl}\delta K_{lk} \qquad -4\int d^{4}x \,\varepsilon^{ijk}\left(\frac{1}{2}{}^{3}\Gamma^{p}_{iq}\partial_{j}{}^{3}\Gamma^{q}_{kp} + \frac{1}{3}{}^{3}\Gamma^{p}_{iq}{}^{3}\Gamma^{r}_{jr}{}^{3}\Gamma^{r}_{kp}\right)$$

Parity violation: different power spectrum for each elicity

$$\langle \gamma_{\vec{k}}^{\pm} \gamma_{\vec{k}'}^{\pm} \rangle = (2\pi)^3 \delta(\vec{k} + \vec{k}') \frac{H^2}{2M_{\rm Pl}^2 k^3} \left(1 \pm \beta \frac{\pi}{2} \frac{H}{\Lambda} \right)$$

For $r \sim 0.1$ we can observe a 50% difference between the two polarizations

Gluscevic, Kamionkowski 10 Ferte, Grain 14

• Not only spectrum, also $\langle \gamma \gamma \gamma \rangle$ cannot be modified at leading order in derivatives

Single-field consistency relation for 3pf

Squeezed limits

Maldacena 03 PC, Zaldarriaga 04

$$\phi(t, \vec{x}) = \phi_0(t) \qquad h_{ij} = e^{2\zeta(t, \vec{x})} \left(e^{\gamma(t, \vec{x})} \right)_{ij}$$

The long mode is already classical when the other freeze and acts simply as a rescaling of the coordinates

$$\lim_{\vec{q}\to 0} \langle \zeta_{\vec{q}} \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle' = -\langle \zeta_{\vec{q}} \zeta_{-\vec{q}} \rangle' \langle \zeta_{\vec{k}_1} \zeta_{-\vec{k}_1} \rangle' \frac{\mathrm{d} \log k_1^3 \langle \zeta_{\vec{k}_1} \zeta_{-\vec{k}_1} \rangle'}{\mathrm{d} \log k_1}$$

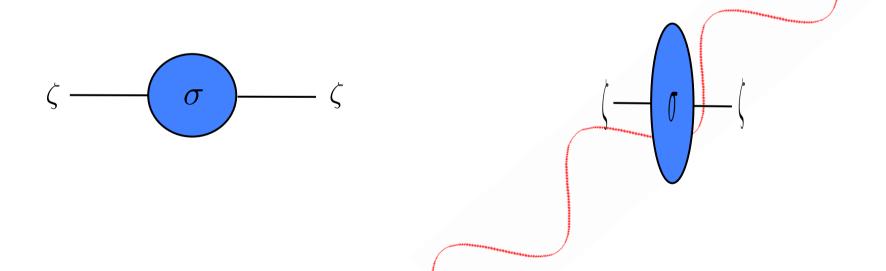
Violated in multifield:

Tensor consistency relation for 3pf

Same logic leads to

$$\lim_{\vec{q}\to 0} \langle \gamma^s_{\vec{q}} \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle' = -\langle \gamma^s_{\vec{q}} \gamma^s_{\vec{-}q} \rangle' \epsilon^s_{ij} k^i_1 k^j_1 \frac{\partial}{\partial k^2_1} \langle \zeta_{\vec{k}_1} \zeta_{-\vec{k}_1} \rangle'$$

But this is valid also for multi-field models of inflation



Violated if there are extra tensors

Higuchi bound

Spin-2 particles in de Sitter with $m^2 < 2H^2$ are forbidden (besides the graviton)

- Group theoretical statement
- In Pauli-Fierz action, longitudinal component becomes a ghost
- Symmetries on 2pf

Arkani-Hamed, Maldacena 15

$$\mathcal{O}_{ij} \sim \eta^{\Delta}$$

$$\Delta_{\pm} = \frac{3}{2} \pm \sqrt{\left(s - \frac{1}{2}\right)^2 - \frac{m^2}{H^2}}$$

$$\langle \epsilon^2.O_{\vec{k}}\tilde{\epsilon}^2.O_{-\vec{k}}\rangle' \propto k^{2\Delta-3} \left[e^{-2i\chi} + \frac{4(3-\Delta)}{\Delta}e^{-i\chi} + \frac{6(3-\Delta)(2-\Delta)}{(\Delta-1)\Delta} + \frac{4(3-\Delta)}{\Delta}e^{i\chi} + e^{2i\chi} \right]$$

Becomes negative for $\Delta < I$

For example one cannot have KK gravitons with a small mass

Composite operators

Does Higuchi bound apply to composite operators? E.g. $\partial_i\phi\partial_j\phi-rac{1}{3}(\partial\phi)^2\delta_{ij}$

No!

- Only if $\mathcal{O}_{\mu
 u} \sim \eta^{\Delta}$
- Only for conformal primaries

$$(2\Delta + 1)(\partial_i \phi \partial_j \phi - \frac{1}{3} \delta_{ij} (\partial \phi)^2) - \Delta \left[\partial_i (\phi \partial_j \phi) - \frac{1}{3} \delta_{ij} \partial_k (\phi \partial_k \phi) \right]$$

Descendants

Cannot rule out the existence of operators below Higuchi, though one has probably to face tachyons

Ways out

- Coupling with inflaton breaks dS isometry: can make helicity-2 healthy
- Bigravity theories have a reference metric different from dS

Hinterbichler's talk

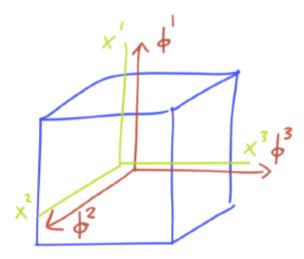
Models with a different symmetry pattern

Piazza's talk

E.g. Solid inflation (also Gauge-flation, Chromo-Natural...)

CR rescaling argument fails + extra tensors

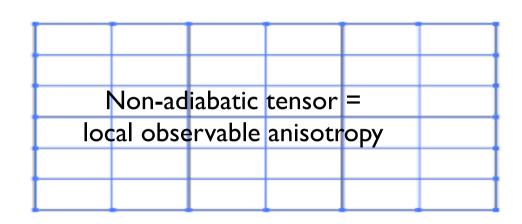
$$\langle \gamma_{\vec{q} \to 0}^{\lambda} \zeta_{\vec{k}} \zeta_{-\vec{k}} \rangle' = -\frac{10}{9} \frac{F_Y}{F} P_{\gamma}(q) P_{\zeta}(k) \frac{1}{c_L^2 \epsilon} \left(\hat{k}^i \hat{k}^j \epsilon_{ij}^{\lambda} \right)$$



Anisotropy

Violation of tensor CR ←→ (Light) Non-adiabatic tensor mode

Non-adiabatic scalar just changes local homogeneous vslues



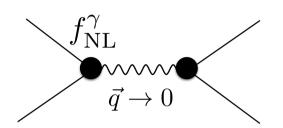
Universe does not isotropize quickly during inflation

We ask inflation to make the Universe flat and homogeneous, not isotropic

Experimental signatures

 $\langle BTT
angle$ Meerburg, Meyers, van Engelen, Ali Haimoud 16

NEXT TALK!!



If tensor CR holds:

- I. Super-H γ does nothing
- 2. Inside-H γ induces space-dependent quadrupolar power spectrum (fossil)

e.g. Schmidt, Pajer, Zaldarriaga 13

If tensor CR is broken:

I. Quadrupolar modulation of power spectrum: $P_{\zeta}(k)\left[1+\mathcal{Q}_{ij}\hat{k}_{i}\hat{k}_{j}
ight]$

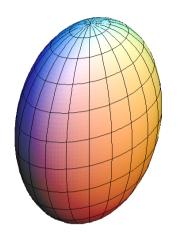
$$\mathcal{Q} \lesssim 10^{-2}$$
 Planck I5

$$P_{\zeta}(\vec{k}) = P_{\zeta}(k) \left[1 + f_{NL}^{\gamma} \epsilon_{ij}^{s}(\vec{q}) \hat{k}_{i} \hat{k}_{j} \gamma_{q}^{s} \right]$$

$$\mathcal{Q}^2 \simeq rac{8\pi}{15} f_{
m NL}^{\gamma} \, ^2 r P_\zeta \cdot \Delta N$$

Sensitive to number of e-folds

Experimental signatures



Statistics of Gaussian Q_{ij} completely fixed by its variance

Different from axisymmetric:
$$P_{\zeta}(k) \left[1 + (\vec{E} \cdot \hat{k})^2 \right]$$

(like models with vector in background)

Probability same eigenvalues at 10% is ~ 0.7%

2. 4-point function in countercollinear limit

$$\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \zeta_{\vec{k}_4} \rangle' = \frac{f_{\text{NL}}^{\gamma^2}}{4} P_{\gamma}(q) P_{\zeta}(k_1) P_{\zeta}(k_3) \cos 2\chi_{12,34}$$

No analysis so far. Similar to τ_{NL} but orthogonal

Maybe GWs are already in the data!

Conclusions

• Robustness of
$$\Delta_h^2(k) = \frac{2}{\pi^2} \frac{H^2}{M_{
m pl}^2}$$

- Robustness of tensor consisteny relations
- Violations would be extremely interesting: different symmetry pattern

Backup slides