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Compare with scalars

•  It is easy to play with scalar perturbations: 

1.   choice of potential
2.   many scalars (effects on late Universe)
3.   speed of propagation cS

Room for alternatives to inflation
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•  It is not easy to play with gravity ! GWs are direct probes of H



Two observables

1.  Tensor power spectrum:

Can we modify it by non-trivial speed cT ?

2.  Consistency relation with soft tensor mode:
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Figure 2. (e) Representation of a graviton-exchange diagram in the four-point function (which we
mimic in the soft K ⌧ ki limit). Note the black shaded area stands for a generic type of interaction.
(f) A pictorial representation of the momenta configuration of the non-trivial four-point function we
are e↵ectively probing in Eq. (3.4).

Whenever the long-wavelength mode is super-Hubble, k
1

and k
2

are indistinguishable
from one another. In this case, the two contributions on the right-hand side of Eq. (3.1) can
be condensed into a single diagonal term that corresponds to the sum of the regular scalar
power spectrum plus an anisotropic correction,
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about the direction K̂ of the long-wavelength mode can be

isotropic (if the extra field is a scalar) or anisotropic if the extra field is a vector or tensor
field [10, 11]. In this work, the field hp is the tensor mode from the metric (�p).

Null searches for the quadrupolar anisotropies described by Eq. (3.3), when the new
field is a tensor field, both in the CMB [43–48] and LSS [49, 50], have resulted in a lower
bound . O(0.01) on the magnitude of the quadrupole.

If the long-wavelength mode is sub-Hubble, any set of two scalar modes of wavenumbers
~k
1

and ~k
2

with ~k
1

+ ~k
2

+ ~K = 0 can be used to estimate the amplitude of the tensor mode,
providing a powerful probe that may well complement other existing ones aimed at the search
for primordial gravitational waves (including measurements of the B-mode CMB polarization
[51–56], gravitational lensing e↵ects in the CMB [37, 57–59], LSS [59–63] and 21cm cosmology
[64–66], and direct gravitational-wave searches [67–74]). For a stochastic GW background,
the minimum-variance estimator for the tensor amplitude is [10],
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Speed of gravity

Effective field theory of inflation:

Cheung, PC, Fitzpatrick, Kaplan, Senatore 07 

t = const

Parametrize the most general dynamics 
compatible with symmetries
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•  Scale invariance without H ~ const.
•  PT does not measure energy scale
•   

�2
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· 1
cT (t)

nT 6= 2Ḣ/H2 < 0

Speed of gravity
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Disformed away

Blue tilt using cT  à Stable            (NEC violation) with operator

No loss of generality in taking cT = 1
(even multifield or alternatives to inflation)
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Exceptions:    1. Different symmetry pattern (solid inflation, gauge-flation…)
   
  2. GWs not produced as vacuum fluctuations

PC, Luty, Nicolis, Senatore 06 

e.g Cannone, Tasinato, Wands 14 

˙̃H > 0

Domcke + Ben-Dayan talks



Spectrum and 3pf corrections

•  Corrections to spectrum start with 3 derivative operators:

•  Not only spectrum, also   cannot be modified at leading order in 
derivatives 

Parity violation: different power spectrum for each elicity

Gluscevic, Kamionkowski 10
Ferte, Grain 14

For r ~ 0.1 we can observe a 50% difference 
between the two polarizations



Squeezed limits

The long mode is already classical when the other freeze 
and acts simply as a rescaling of the coordinates

⇥(t, ⇤x) = ⇥0(t) hij = e2�(t,⇥x)�ij

Single-field consistency relation for 3pf 
Maldacena 03
PC, Zaldarriaga 04
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Same logic leads to

Tensor consistency relation for 3pf 

But this is valid also for multi-field models of inflation

see also Dimastrogiovanni, Fasiello, 
Kamiokowski 15
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Higuchi bound Higuchi 87

Spin-2 particles in de Sitter with m2 < 2H2 are forbidden (besides the graviton)

•  Group theoretical statement
•  In Pauli-Fierz action, longitudinal component becomes a ghost
•  Symmetries on 2pf

Note that we only care about ✏ up to an overall scale, therefore we can generically take it to
be of this form. Then we find that the two point function in Fourier space is proportional
to (see appendix A)
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Here m indicates the angular momentum of the mode around the ~k direction. We some-
times call this the “helicity” of the mode. The factor in parenthesis in (3.26) is an un-
interesting normalization factor, see appendix (A). The I

2

(�,m) factor is a phase for
� = 3

2

+ iµ, with µ real. Note that the hypergeometric function in (3.28) is a polynomial.
This formula contains an interesting lesson. First, let us recall the formula that gives

the dimension in terms of the mass for a spin s field [21]
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where the last equality defines µ. When m = 0 we have a gauge symmetry in the bulk. In
this case, �

+

= 1 + s which is the dimension of a conserved current. Let us now consider
the massive case, but with a small enough mass so that �± are real. The leading late
time behavior of the expectation value of the field is given in terms of the component with
dimension ��, which is associated to the more slowly decaying function. An interesting
feature of the coe�cients in (3.28) is that they can change sign. First, let us see this in a
concrete example. Consider the s = 2 case
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with � =  � 0. Note that for any integer spin I
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in (3.27) is a ratio of simple polynomials
of �. Let us start with � = 3

2

where all terms are positive. As � decreases we see that the
middle term changes sign at � = 1. The fact that it diverges at � = 1 is related to the
fact that the kinetic term for this mode becomes zero. This is the phenomenon of partial
masslessness discussed in [22, 23]. For �� < 1 we have a negative sign. This negative
sign is a problem because the term corresponds to the expectation value of a field and its
complex conjugate4, which should be positive. Note that here we are using that for real

4Now that for  0 =  , ~✏̃ = ~✏

⇤ in (3.25).
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Arkani-Hamed, Maldacena 15

For example one cannot have KK gravitons with a small mass

Becomes negative 
for Δ <1

Oij ⇠ ⌘�



Composite operators

Does Higuchi bound apply to composite operators? E.g. 

When � goes below 1 (corresponding to m2 < 2H2
), the helicity-0 component becomes negative, it

becomes a ghost2.
Phrased in these general terms, the Higuchi bound looks very powerful, since it looks one can apply

it to any spin-2 operator, and not only to an elementary spin-2 particles. For example it seems it applies
also to a composite operator built out of scalars @i�@j� � 1

3(@�)
2�ij . Actually this conclusion is too

quick and it is straightforward to verify that this operator does not have a 2-point function of the form of
eq. (11). Indeed eq. (11) only applies to primary operators of a CFT and the operator @i�@j�� 1

3(@�)
2�ij

is not a primary. At first, the distinction between primaries and descendants in de Sitter looks odd:
the transformation properties of a field in de Sitter is fixed by its indeces, independently of whether
it is the derivative of another field or not. Why there should be difference between the spatial part of
a field Aµ and the one of @µ�? The difference stems from the different time dependence of the time
components, A0 and @0� respectively. For Aµ all components will asymptotically behave in the same
way: Aµ(~x, ⌘) ⇠ ¯Aµ(~x)⌘�. In this case under a de Sitter isometry, A0 does not affect the transformation
of Ai which behave like a CFT primary. On the other hand if @i� / ⌘�, then @0� / ⌘��1. Now the
time component grows faster for ⌘ ! 0 and one cannot neglect, for ⌘ ! 0, the first term on the RHS
of eq. (9). One can check that taking this into account, @i� transforms as a descendant as it should.

In a CFT a generic operator is a sum of primaries and descendants. One can thus make @i�@j��
1
3(@�)

2�ij primary by adding suitable descendant fields. To find them one can impose that the variation
under a special conformal transformation vanishes at the origin: this is a definition of primary field,
while descendants change even at x = 0 (see Appendix A). In particular:

�K@i� = �bi�+O(x) �K@i@j� = (�+ 1)(bi@j + bj@i)�� �ijb
k@k�+O(x) , (14)

where � is the dimension of �, For the particular case at hand we find (for simplicity we multiplied
the operator by (2�+ 1) ):
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We verify explicitly in Appendix C that the 2-point function of this operator is of the form (11) with
dimension �t = 2�+ 2.

Therefore the Higuchi bound does not apply to a general spin-2 operator. We are interested in the
helicity-2 component of the operator that can mix with the graviton. The conformal symmetry relates
the various helicities as in eq. (12), so that the pathology of the helicity-0 part becomes a pathology of
the full operator. However eq. (12) only holds for primary operators: the contributions of descendants
will change the ratio among the different helicities and in particular one can have a helicity-2 component
with an arbitrary �.

Although we cannot exclude the existence of spin-2 composite operator with small � it appears, at
least in a perturbative theory, to require tachyons. For example, for the operator @i�@j�� 1

3(@�)
2�ij ,

we need the scalars to have � ' �1 for the composite operator to have �t close to zero. The same
occurs if we build the operator out of vectors, AiAj , since a massless vector has � = 1.

2The case � = 0 is an exception, since it corresponds to a massless particle for which only the helicity-2
components are physical, the others being only gauge artifacts.
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No!
 
•  Only if 

•  Only for conformal primaries

Oµ⌫ ⇠ ⌘�

Cannot rule out the existence of operators below Higuchi,    
      though one has probably to face tachyons

Descendants



Ways out

•  Coupling with inflaton breaks dS isometry: can make helicity-2 healthy

•  Bigravity theories have a reference metric different from dS

•  Models with a different symmetry pattern

E.g.  Solid inflation (also Gauge-flation, Chromo-Natural...)

CR rescaling argument fails 
+ extra tensors 

Hinterbichler’s talk

Piazza’s talk
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With this identification, the computation of the
scalar two-point function on the anisotropic back-
ground is amenable to the techniques spelled out
throughout this paper. We just need the trilinear
action for one tensor and two scalar modes, which
to lowest order in slow-roll reads8:
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, (47)

where we have used that for scalar modes ∂iπj is a
symmetric matrix. For a very long wavelength back-
ground γ, we can then see immediately that this
interaction term is, once again, just a renormaliza-
tion of the speed of the longitudinal modes c2L → c̃2L
where

c̃2L = c2L +
4

9
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ϵ
(k̂ik̂jγij) . (48)

For the γij of eq. (46), and letting θ now denote the

angle between k⃗ and the x̂ direction, this corrects
the scalar spectrum as

Pζ(k) → Pζ(k)

(

1− σ
10

9
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F
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c2Lϵ
(3 cos2 θ − 1)

)

,

(49)
thus allowing us to compute the order-one factor
that was left generic in [13].
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Appendix: Tensors

The cubic part of the solid Lagrangian involving a
single tensor can be found by expanding the action
in [1]:
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8 This can be found by expanding the full action for solid
inflation contained in [1]. We note that working to lowest
order in the slow-roll parameters allows one to neglect δN
and N i as they will be of order ϵπ.

This yields the soft limits
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for the scalar and vector cases, where the po-
larization tensors are normalized according to
ϵsij(k⃗)ϵ

s′
ji(−k⃗) = 2δss

′

, and where the power spec-
trum is given in [1]:

Pγ(q) =
H2

M2
Pl

1

q3
. (A.4)

We omit the mixed tensor-scalar-vector case, for
the same reasons as before, as well as the relations
where the two-point function for the short modes
contains a single tensor. Since Pγ(k) does not de-
pend on speed c2T to leading order in slow-roll, in
order to find the correlators ⟨ζγγ⟩, ⟨πT γγ⟩, ⟨γγγ⟩
we need to keep the next to leading corrections in
the expression in [1]:

Pγ(k) =
H2

c

M2
Pl

(k/aH)8c
2

T
ϵc/3

(k/acHc)ϵc
1

k3

∼
H2

c

M2
Pl

1

k3

{

1 +
8c2T ϵc
3

log

(

k

aH

)

− ϵc log

(

k

acHc

)}

(A.5)

where the subscript denotes the value of the param-
eter at some fiducial time (e.g. at the horizon cross-
ing time for the longest observable mode), and the
approximation is appropriate when the logarithm is
large (typically it will be of order the number of e-
foldings) but the combination ϵ × log is still small.
In this approximation, the relevant parts of the cu-
bic solid Lagrangian for calculating the leading order
contribution to the squeezed three-point function are

Lγγγ =M2
Pl a

3H2FY

F

{

− 1
9γijγjkγki

}

, (A.6)

Lπγγ =M2
Pl a

3H2FY

F

{

− 2
9 (∂ · π)γijγji + 2

3γijγjk∂
kπi

}

.

(A.7)

which yield the soft limits

⟨ζq⃗→0γ
s
k⃗
γs

′

−k⃗
⟩′ =

16

9

FY

F
Pζ(q)Pγ(k) log

(

k

aH

)

×
(

ϵsijϵ
s′

ji − 3q̂iϵsijϵ
s′

jk q̂
k
)

, (A.8)
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Experimental signatures

1.  Quadrupolar modulation of power spectrum:

3 Observational prospects
Tensor modes with a wavelength much longer than the present Hubble radius are completely unobserv-
able if the consistency relation holds [18]. In this case, the only observable effects arise when the tensor
enters the Hubble radius: it induces tides which result in a quadrupolar modulation of the density field
[19, 20, 21, 22]. In the following we are going to neglect this “standard” effect, since we are interested
in the possible additional signatures due to the violation of the consistency relation.

If a tensor mode can be directly observed—in the CMB polarization or in the Galaxy shear [20]—
one can probe the correlation function h�⇣⇣i. Here we concentrate on the effect this correlation leaves
on the scalar correlation functions. The effect of a tensor mode which is much longer than the scalar
perturbations we are interested in is encoded in the squeezed limit of the h�⇣⇣i correlator

h⇣~k1⇣~k2i� = h⇣~k1⇣~k2i+ �s~q
h�s~q ⇣~k1⇣~k2i0

P�(q)
+O(�2) . (20)

If � is not observed, one can average over it and this leaves two observable effects. Tensor modes with
wavelength much longer than the present Hubble scale induce a quadrupolar modulation of the scalar
2-point function, while tensors which are inside the observable Universe give a scalar 4-point function
h⇣k1⇣k2⇣k3⇣k4i in the countercollinear limit q ⌧ ki with ~q ⌘ ~k1 + ~k2. Since these effects are not based
on the direct observation of �, they are also induced by a squeezed limit of the form of eq. (20) with
another helicity-2 state which does not mix with the graviton. Let us now discuss the two effects
separately.

3.1 Quadrupolar modulation of the scalar power spectrum

One can parametrize the squeezed limit of h�⇣⇣i as

h�s~q ⇣~k1⇣�~k1
i0 ⇠

✓
f�
NL +

3

2

◆
h�s~q�s�~qi0 h⇣~k1⇣�~k1

i0 ✏sij(~q)ˆk1,iˆk1,j . (21)

In this way f�
NL parametrizes deviations from the consistency relation: as we discussed, when the

tensor is way out of the Hubble radius the only physical effects are / f�
NL, while the part satisfying

the consistency relation is cancelled by projection effects. Eq. (20) gives

P⇣(
~k) = P⇣(k)

h
1 + f�

NL✏
s
ij(~q)ˆkiˆkj�

s
q

i
⌘ P⇣(k)

h
1 +Qij

ˆkiˆkj
i
. (22)

The (squared) amplitude of the quadrupolar modulation Qij is then given by

Q2
=

8⇡

15

hQijQiji = 8⇡

15

Z
d3q

(2⇡)3
d3p

(2⇡)3

X

s, s0

f�
NL

2✏sij(~q)✏
s0
ij(~p)h�s~q�s

0
~p i =

=

16

15⇡
f�
NL

2
Z

q<H0

dq q2h�s~q�s�~qi0 ⇡
8⇡

15

f�
NL

2rAs�N ; (23)

where r is the tensor-to-scalar ratio, As the amplitude of scalar power spectrum, As = 2.2⇥ 10

�9 [25]
and �N is the number of e-folds of all modes outside the present Hubble radius. Experimental limits
are usually set on the quantity g2 ⌘ Q/

p
5: g2 . 10

�2 [24]. This gives:

f�
NL

2 r =

75

8⇡

g22
As

1

�N
. 1.4⇥ 10

5 1

�N
. (24)
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~k1

~k2

~k3

~k4

~K

(e) (f)

Figure 2. (e) Representation of a graviton-exchange diagram in the four-point function (which we
mimic in the soft K ⌧ ki limit). Note the black shaded area stands for a generic type of interaction.
(f) A pictorial representation of the momenta configuration of the non-trivial four-point function we
are e↵ectively probing in Eq. (3.4).

Whenever the long-wavelength mode is super-Hubble, k
1

and k
2

are indistinguishable
from one another. In this case, the two contributions on the right-hand side of Eq. (3.1) can
be condensed into a single diagonal term that corresponds to the sum of the regular scalar
power spectrum plus an anisotropic correction,

P (~k) ' P (k)
h
1 + ↵ �

ij

k̂
i

k̂
j

i
, (3.3)

where �
ij

is the tensor perturbation in our observable volume. Here ↵ is related to the
amplitude of the tss correlation, ↵ ⇠ B(k

L

, k
S

, k
S

)/P (k
S

)P
�

(k
L

). Eq. (3.3) shows that the

expectation value

⌧����(~k)
���
2

�
about the direction K̂ of the long-wavelength mode can be

isotropic (if the extra field is a scalar) or anisotropic if the extra field is a vector or tensor
field [10, 11]. In this work, the field hp is the tensor mode from the metric (�p).

Null searches for the quadrupolar anisotropies described by Eq. (3.3), when the new
field is a tensor field, both in the CMB [43–48] and LSS [49, 50], have resulted in a lower
bound . O(0.01) on the magnitude of the quadrupole.

If the long-wavelength mode is sub-Hubble, any set of two scalar modes of wavenumbers
~k
1

and ~k
2

with ~k
1

+ ~k
2

+ ~K = 0 can be used to estimate the amplitude of the tensor mode,
providing a powerful probe that may well complement other existing ones aimed at the search
for primordial gravitational waves (including measurements of the B-mode CMB polarization
[51–56], gravitational lensing e↵ects in the CMB [37, 57–59], LSS [59–63] and 21cm cosmology
[64–66], and direct gravitational-wave searches [67–74]). For a stochastic GW background,
the minimum-variance estimator for the tensor amplitude is [10],

Â
�

= �2

�

X

~

K,p

⇣
P f

�

(K)
⌘
2

2
�
Pn

p

(K)
�
2

 
|�̂

p

( ~K)|2
V

� Pn

p

(K)

!
, (3.4)

where P f

p

⌘ P
�

(K)/A
�

is a fiducial power spectrum for the tensor modes. The quantity

�̂
p

( ~K) is the optimal estimator for the amplitude of a single Fourier mode,

�̂
p

( ~K) ⌘ Pn

p

(K)
X

~

k

B
p

( ~K,~k, ~K � ~k)/P
�

(K)

2V P tot(k)P tot(| ~K � ~k|)
�(~k)�( ~K � ~k) , (3.5)
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3 Observational prospects
Tensor modes with a wavelength much longer than the present Hubble radius are completely unobserv-
able if the consistency relation holds [18]. In this case, the only observable effects arise when the tensor
enters the Hubble radius: it induces tides which result in a quadrupolar modulation of the density field
[19, 20, 21, 22]. In the following we are going to neglect this “standard” effect, since we are interested
in the possible additional signatures due to the violation of the consistency relation.

If a tensor mode can be directly observed—in the CMB polarization or in the Galaxy shear [20]—
one can probe the correlation function h�⇣⇣i. Here we concentrate on the effect this correlation leaves
on the scalar correlation functions. The effect of a tensor mode which is much longer than the scalar
perturbations we are interested in is encoded in the squeezed limit of the h�⇣⇣i correlator

h⇣~k1⇣~k2i� = h⇣~k1⇣~k2i+ �s~q
h�s~q ⇣~k1⇣~k2i0

P�(q)
+O(�2) . (20)

If � is not observed, one can average over it and this leaves two observable effects. Tensor modes with
wavelength much longer than the present Hubble scale induce a quadrupolar modulation of the scalar
2-point function, while tensors which are inside the observable Universe give a scalar 4-point function
h⇣k1⇣k2⇣k3⇣k4i in the countercollinear limit q ⌧ ki with ~q ⌘ ~k1 + ~k2. Since these effects are not based
on the direct observation of �, they are also induced by a squeezed limit of the form of eq. (20) with
another helicity-2 state which does not mix with the graviton. Let us now discuss the two effects
separately.

3.1 Quadrupolar modulation of the scalar power spectrum

One can parametrize the squeezed limit of h�⇣⇣i as

h�s~q ⇣~k1⇣�~k1
i0 ⇠

✓
f�
NL +

3

2

◆
h�s~q�s�~qi0 h⇣~k1⇣�~k1

i0 ✏sij(~q)ˆk1,iˆk1,j . (21)

In this way f�
NL parametrizes deviations from the consistency relation: as we discussed, when the

tensor is way out of the Hubble radius the only physical effects are / f�
NL, while the part satisfying

the consistency relation is cancelled by projection effects. Eq. (20) gives

P⇣(
~k) = P⇣(k)

h
1 + f�

NL✏
s
ij(~q)ˆkiˆkj�

s
q

i
⌘ P⇣(k)

h
1 +Qij

ˆkiˆkj
i
. (22)

The (squared) amplitude of the quadrupolar modulation Qij is then given by

Q2
=

8⇡

15

hQijQiji = 8⇡

15

Z
d3q

(2⇡)3
d3p

(2⇡)3

X

s, s0

f�
NL

2✏sij(~q)✏
s0
ij(~p)h�s~q�s

0
~p i =

=

16

15⇡
f�
NL

2
Z

q<H0

dq q2h�s~q�s�~qi0 ⇡
8⇡

15

f�
NL

2rAs�N ; (23)

where r is the tensor-to-scalar ratio, As the amplitude of scalar power spectrum, As = 2.2⇥ 10

�9 [25]
and �N is the number of e-folds of all modes outside the present Hubble radius. Experimental limits
are usually set on the quantity g2 ⌘ Q/

p
5: g2 . 10

�2 [24]. This gives:

f�
NL

2 r =

75

8⇡

g22
As

1

�N
. 1.4⇥ 10

5 1

�N
. (24)

6

Q2 ' 8⇡

15
f� 2
NL rP⇣ ·�N Sensitive to number of e-folds

f�
NL



Experimental signatures

2.  4-point function in countercollinear limit

3.2 Scalar 4-point function

Consider the 4-point function h⇣k1⇣k2⇣k3⇣k4i in the collapsed limit, namely when one internal momen-
tum, say q ⌘ k1 + k2 ⌧ ki. In this configuration, the 4-point function simply expresses the correlation
between two pairs of 2-point functions. They are correlated because of the presence of a long wavelength
perturbation that could be a scalar or a tensor perturbation. The contribution due to the graviton
exchange can be computed using (20),

h⇣~k1⇣~k2⇣~k3⇣~k4i
0 ' ⌦h⇣~k1⇣�~k1

i h⇣~k3⇣�~k3
i↵0 =

=

X

s

h�s~q�s�~qi0
h�s~q ⇣~k1⇣�~k1

i0
P�(q)

h�s~q ⇣~k3⇣�~k3
i0

P�(q)
=

=

f�
NL

2

4

P�(q)P⇣(k1)P⇣(k3)
X

s

✏sij(~q)✏
s
kl(~q)ˆk1,iˆk1,jˆk3,kˆk3,l . (28)

The angular dependence, of (28) can be cast in the form, [23],
X

s

✏sij(~q)✏
s
kl(~q)ˆk1,iˆk1,jˆk3,kˆk3,l ⌘ cos 2�12,34 , (29)

where �12,34 ⌘ �1��3 is the angle between the projection of k1 and k3 on the plane orthogonal to k12.
The the final expression of the trispectrum due to a graviton exchange is

h⇣~k1⇣~k2⇣~k3⇣~k4i
0
=

f�
NL

2

4

P�(q)P⇣(k1)P⇣(k3) cos 2�12,34. (30)

An experimental analysis aimed to get any constraint on the amplitude of (30) has not been done
yet, so that, we can only give a very rough estimate of f�

NL looking at the experimental limits on the
parameter ⌧NL. In the usual parametrization of the trispectrum, ⌧NL gives the amplitude of the 4
scalar correlator in the collapsed limit, [16],

h⇣~k1 ⇣�~k1+~q
⇣~k3 ⇣�~k3�~q

i0 = 5

3

⌧NLP⇣(q)P⇣(k1)P⇣(k3). (31)

We see that (30) reduces to the usual parametrization if �12,34 = n⇡
2 . We can thus compare eqs. (30)

and (31) to put a rough bound on f�
NL. Neglecting the angular dependence we get

f�
NL

2r  20

3

⌧NL . 1.9⇥ 10

4, (32)

where we used ⌧NL < 2800 (95%CL), [17].
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No analysis so far. Similar to τNL but orthogonal

Maybe GWs are already in the data!

Statistics of Gaussian Qij completely fixed by its variance

Different from axisymmetric:

(like models with vector in background)

Probability same eigenvalues at 10% is ~ 0.7%

P⇣(k)
h
1 + ( ~E · k̂)2
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Conclusions

•  Robustness of 

•  Robustness of tensor consisteny relations

•  Violations would be extremely interesting: different symmetry pattern     
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