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Introduction

Discrepancy between different determinations of

the proton charge radius

@ (electronic) hydrogen Lamb shift: r, = 0.8802(80) fm,
[CODATA, 2008]

@ unpolarized electron scattering: r, = 0.879(5)(4)(2)(4) fm,
[Mainz, 2010]

@ polarized electron scattering: r, = 0.875(10) fm
[Jefferson Lab]

@ muonic hydrogen Lamb shift: r, = 0.84184(67) fm,
[PSI, 2020],
5 standard deviations from the CODATA value.
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Contributions to the Lamb shift in eH

@ one-loop electron self-energy and vacuum polarization
@ two-loops

@ three-loops

@ pure recoil correction

@ radiative recoil correction

@ finite nuclear size, and polarizability
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One-loop electron self-energy
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@ Numerical evaluation of the one-loop self-energy,
U. Jentschura (1999)
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Two-loop electron self-energy correction
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Electron propagators include external Coulomb field, external legs
are bound state wave functions.

The expansion of the energy shift in powers of Z «

SAE = m (%)2 F(Za)

F(Za) = B+ (Za)Bso+ (Za)? {[|n(Za)_2]3 Bes

HIN(Z ) 22 Bsp + In(Z ) 2 By + G(za)}
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Direct numerical calculation versus analytical

expansion

@)

Geo(1) = —86(15) (Yerokhin,2009), uncertainty 6E(1S) = +1.5 kHz

Bso = —61.6(9.2) (K.P., U.J.,2003)

uncertainty due to the unknown high energy contribution from the
class of about 80 diagrams

discrepancy in the proton charge radius — 6E(1S) = 94 kHz
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Recoil corrections

@ finite nuclear mass effects, beyond the Dirac equation

@ leading O(a®) terms are known for an arbitrary mass ratio
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@ many higher order corrections included
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Nuclear size and polarizability corrections

@ leading finite size

@ higher order finite size ~ 1073

0Ers = —Efs Gy %"za
where C, =1.7(1)
o finite size combined with SE and VP ~ O(Z a?)

@ proton polarizability: d,q E = —0.087(16) 2% hkHz
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Experimental results for hydrogen and r,

@ Vexp.(2P1/2 — 254 ,2) = 1057845.0(9.0) kHz,
[Lundeen, Pipkin, 1994]

® Vep(1S1/2 — 251 2) = 2466 061 413 187.074(34) kHz,
[MPQ, 2004]

@ Vexp(251/2 —8Ds5,2) = 770859252 849.5(5.9) kHz,
[Paris, 2001]

@ global fit to the hydrogen data =
r, = 0.8802(80) fm

@ proton charge radius from muonic hydrogen Lamb shift is
calculated in a similar way
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Theory of ©H energy levels

@ uH is essentially a nonrelativistic atomic system
@ muon and proton are treated on the same footing

@ m,/me =206.768 = [ = me/(11a) = 0.737 the ratio of the Bohr
radius to the electron Compton wavelength

@ the electron vacuum polarization dominates the Lamb shift

E = / &Br Vip(r) (pzp — p2s) = 205.006 meV

@ important corrections: second order, two-loop vacuum
polarization, and the muon self-energy

@ other corrections are much smaller than the discrepancy of 0.3
meV.
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One-loop electron vacuum-polarization

@ the electron loop modifies the Coulomb interaction by

Zaa [*d@?)
Vwln) = - ;[; (57Cg e )
1 4 2

E. = (2P|Vip|2P) — (25| Vip|2S) = 205.006 meV
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Leading relativistic correction

No Dirac equation for the finite mass nucleus

_ PP a1 N
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valid for an arbitrary mass ratio
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O(a°) recoil correction

@ pure recoil coorection
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It contributes the amount of
0E; = —0.045meV .

@ proton self-energy, electromagnetic formfactors are infrared divergent

E(n, 1y = 22 (Z20) (Za)* (5,0 In (M?;y) ~Inko(n, /)) )

3rmmj

It contributes
0E; = —0.010meV . (2)
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Light by light diagrams

@ /E;, = —0.0009 meV
@ significant cancellation between diagrams

@ S.G. Karshenboim et al., arXiv:1005.4880
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Proton finite size correction

@ in muonic atoms nuclear finite size effects give a large contribution to
energy levels:

2
Ers = 5 9°(0)(13) oo
3
(ko) s
™

¢(0)
@ relativistic corrections to ¢*(0)
@ electron vp corrections to ¢?(0)
@ muon self-energy correction to ¢?(0)

@ intotal: Ers = —5.2262 5 /fm® meV
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Nuclear structure effects

@ when nuclear excitation energy is much larger than the atomic
energy, the two-photon exchange scattering amplitude gives the
dominating correction
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Two-photon scattering amplitude
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where for a point-like proton T+#* = t**(M) and

T
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=(1,0,0,0), P = M tis a proton momentum at rest and v = q°.

0E = §Eel + 6Einel
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Elastic contribution
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q
7'1Pole = — (@ — 4 V27 (F1 + F2)2
1
T = A UM R —d'F)

_ ogtazy ™ [ ' (Ta—b)(q° —1®) — (Ti — 1) (q° +20/°)
5Eel — 2e (b (0) M / (27T)4i q4(q4 74m2,/2)
= 0.031meV for 2P — 28 transition [Carlson et al, 2011]

in the infinite nuclear mass limit
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((M@) "~ = 1394(22)fm = §Eq = 0.021 meV
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Inelastic and subtraction contributions

@ dispersion relations

L(v.q) = T3~ / dv/ WZ(” )
© d 2 W. /7 2
Twd) = T -2 [ G W)
Yih
_ dq To(q® — V%) — T1 (9% +27)
0 = 20 M/ ‘i q*(q* —4m?v?)

@ W; and W, are known from the inelastic scattering off the proton
. 2

° Ilmq2—>0 % = % ﬁM

@ §Eje = 12.7(5) peV, [Carlson et al. 2011]

@ the total proton structure contribution §E; = 36.9(2.4) peV is
much too small to explain the discrepancy
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Final results

@ AE = E(2P3/5(F =2)) — E(2512(F = 1))
@ experimental result: AE = 206.2949(32) meV

@ total theoretical result from [U. Jenschura, 2011]

I’2
AE = (209.9974(48) - 5.2262f”2) meV =
m

@ r, =0.84169(66) fm
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Analysis of discrepancy

possible sources of discrepancy:
@ mistake in the QED calculations ? uH checked by many and only
few corrections contribute at the level of discrepancy

@ vp verified by an agreement ~ 10~ for 3D — 2P transition in
24Mg and 28Si

@ large Zemach moment (r,((,z))3 ruled out by the low energy
electron-proton scattering [Friar, Sick, 2005], [Cloét, Miller, 2010],
[Distler, Bernauer, Walcher, 2010]

@ nuclear structure correction ? much too small

@ possible new light particles ? ruled out by muon g — 2 and other
low energy Standard Model tests [Barger, Cheng-Wei Chiang,
Wai-Yee Keung, Marfatia, 2010]

@ violation of the universality in the short distance ~ 1fm
lepton-proton interaction ? universality verified experimentally by
a direct comparison of e — p with u — p scattering

@ 5 ¢ shift in Rydberg constant, [Randolf Pohl, 2010]



	Introduction
	Introduction

	Hydrogen Lamb shift
	Hydrogen Lamb shift

	Muonic hydrogen
	Muonic hydrogen

	Analysis of discrepancy
	Analysis of discrepancy


