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We construct weak basis invariants which can give insight into the physical implications of
any flavour model, written in an arbitrary weak basis (WB) in the context of 2HDM.

1 Introduction

The LHC has started the “Higgs Era” with the discovery of a scalar boson with a mass of
approximately 126 GeV 1, 2, which seems to behave like the Standard Model (SM) Higgs boson.
There are very good motivations to consider models with two Higgs doublets 3, 4 despite the
fact that the SM is a very successful theory. Most observations in the hadronic sector are
in agreement with the SM predictions apart from a few anomalies and tensions. However, in
the leptonic sector the SM has to be extended in order to accommodate neutrino masses and
leptonic mixing. Furthermore, accounting for the baryon asymmetry of the Universe requires
new sources of CP violation thus providing a possible motivation to consider two Higgs doublet
models. Supersymmetry, if discovered, will also require the existence of two Higgs doublets. The
discovery of a charged Higgs at the LHC in the future would be an important step towards the
experimental confirmation of the need to extend the Higgs sector of the SM.

Models with two Higgs doublets have potentially large Higgs mediated flavour changing
neutral currents (FCNC). Experimentally FCNC are strongly constrained. There are several
possible ways of suppressing these currents. Natural flavour conservation 5 or the imposition of
alignment 6 eliminate tree level Higgs FCNC. In alternative, one may have FCNC at tree level
suppressed by small entries of the Cabibbo– Kobayashi – Maskawa matrix, VCKM . The first
models of this type based on a symmetry were built by Branco, Grimus and Lavoura 7 and later
on extended in Refs 8, 9. This talk is based on work done in collaboration with Botella and
Branco 10.



2 General Framework

The flavour structure of two Higgs doublet models is given by the Yukawa interactions:
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where Γi and ∆i denote the Yukawa couplings of the lefthanded quark doublets Q0
L to the

righthanded quarks d0R, u0R and the Higgs doublets Φj . The quark mass matrices generated
after spontaneous gauge symmetry breaking are given by:
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where vi ≡ | < 0|φ0i |0 > | and α denotes the relative phase of the vacuum expectation values
(vevs) of the neutral components of Φi. The matrices Md, Mu are diagonalized by the usual
bi-unitary transformations:

U †dLMdUdR = Dd ≡ diag (md,ms,mb) (3)

U †uLMuUuR = Du ≡ diag (mu,mc,mt) (4)

The neutral and the charged Higgs interactions obtained from Eq. (1) are of the form
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where v ≡
√
v21 + v22 ≈ 246 GeV, and H0, R are orthogonal combinations of the fields ρj ,

arising when one expands 11 the neutral scalar fields around their vacuum expectation values,

φ0j = eiαj√
2

(vj +ρj + iηj), choosing H0 in such a way that it has couplings to the quarks which are

proportional to the mass matrices, as can be seen from Eq. (5). Similarly, I denotes the linear
combination of ηj orthogonal to the neutral Goldstone boson. The matrices N0

d , N0
u are given

by:
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The flavour structure of the quark sector of two Higgs doublet models is thus fully specified in
terms of the four matrices Md, Mu, N0

d , N0
u . The physical neutral Higgs fields are combinations

of H0, R and I. Flavour changing neutral currents are controlled by N0
d and N0

u .

3 Weak Basis Invariants

The four flavour matrices Md, Mu, N0
d , N0

u contain a large redundancy of parameters which
results from the fact that under a weak basis (WB) transformation they change transforming as
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without altering their physical content. Different Lagrangians related to each other by WB
transformations describe the same physics. In view of the above redundancy, it is of great
interest to construct WB invariants which can be very useful in the analysis of the physical



content of the flavour sector of two Higgs doublet models 10 by following the technique that was
introduced in 12 to the study of CP violation in the SM. This technique was later generalized to
many different scenarios, in particular to the study of explicit CP violation in the scalar sector
of multi-Higgs doublet models prior to gauge symmetry breaking 13 as well as CP violation in
the scalar sector after this breaking 14 and also taking into account both the scalar and the
fermionic sector 15.

In this framework, it is clear that one can build new WB basis invariants which do not arise
in the SM by evaluating traces of blocks of matrices involving the up and down quark sector, like
for example MγN

0†
γ or N0

γN
0†
γ . For definiteness let us consider the WB invariant tr(MdN

0†
d ) and

note that its physical significance becomes transparent in the WB where Md is diagonal, real,
since in this basis the matrix N0

d already coincides with the couplings to the physical quarks.
In this basis one has:
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We denote Nd, the matrix N0
d in the basis where it couples to the physical quarks. This invariant

is not sensitive to Higgs-mediated FCNC, but Im(I1) is specially important, since it probes the
phases of (Nd)jj which contribute to the electric dipole moment of down-type quarks. Obviously,
one can construct an analogous invariant for the up-quark sector, namely tr(MuN

0†
u ). Let us

now consider a WB invariant which is sensitive to the off-diagonal elements of Nd, namely:
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where we have kept the notation used in Eq. (8), having evaluated I2 in the WB where Md

is real and diagonal. WB invariants are also important to study CP violation. In the SM a
necessary and sufficient condition for CP invariance is the vanishing of the WB invariant 12 :

ICP1 ≡ tr [Hu, Hd]
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where Hd,u ≡ (Md,uM
†
d,u), Q stands for a rephasing invariant quartet of VCKM , defined by

Qαiβj ≡ VαiVβjV
∗
αjV

∗
βi (α 6= β, i 6= j) with VCKM ≡ U †uLUdL. The fact that VCKM is not the

identity reflects the fact that UdL 6= UuL, i.e. that there is misalignment of the matrices Hd,
Hu in flavour space. For three generations ICP1 is proportional to det[Hu, Hd], introduced in
Ref. 16. In the present framework there are four matrices relevant for flavour rather than the
two mass matrices of the SM, therefore we can generalise the definition of ICP1 to diferent WB
invariants sensitive to the misalignment of different pairs of Hermitian matrices, such as, for

example ICP2 ≡ tr
[
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d
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In the SM the lowest order WB invariant sensitive to CP violation is given by Eq. (10) and
has dimension twelve in powers of mass. The richer flavour structure of models with two Higgs
doublets allows for lower order invariants sensitive to CP violation, namely, for instance:
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In generic two Higgs doublet models one may even have lower order invariants sensitive to CP
violation. However, with the imposition of a symmetry in order to suppress Higgs mediated
FCNC such lower other invariants may become trivial.

Flavour symmetries and/or texture zeros reduce the number of free parameters and have
physical implications. However symmetries and textures are introduced in a specific WB. Under
a change of WB these will in principle cease to be apparent. In this respect the computation of
weak basis invariants is a very useful tool to recognize properties related to special symmetries



or textures that may not be apparent. In Ref. 10 the summary presented here is extended and
applied to two special cases: models of the type proposed by Branco, Grimus and Lavoura 7 and
a special implementation of nearest – neighbour – interaction (NNI) textures 17 in the context
of two Higgs doublet models based on an Abelian symmetry18.

Acknowledgments

The author thanks the organizers of Rencontres de Moriond for the invitation to present this work
anf for the very stimulating atmosphere. The work presented in this Conference was partially
supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the projects
PTDC/FIS/098188/2008 and CFTP-FCT Unit 777 (PEst-OE/FIS/UI0777/2011) which are
partially funded through POCTI (FEDER), by Marie Curie ITN ”UNILHC” PITN-GA-2009-
237920, by Accion Complementaria Luso-Espanhola PORT2008–03, by European FEDER and
FPA-2008-04002-E/PORTU by Spanish MICINN under grant FPA2008–02878 and GVPROME-
TEO 2010-056. More recently we would like to aknowledge the support of CERN/FP/123580/2011.

References

1. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214 [hep-
ex]].

2. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235
[hep-ex]].

3. G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Phys.
Rept. 516 (2012) 1 [arXiv:1106.0034 [hep-ph]].

4. J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Front. Phys. 80 (2000) 1.
5. S. L. Glashow and S. Weinberg, Phys. Rev. D 15 (1977) 1958.
6. A. Pich and P. Tuzon, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554 [hep-ph]].
7. G. C. Branco, W. Grimus and L. Lavoura, Phys. Lett. B 380 (1996) 119 [hep-ph/9601383].
8. F. J. Botella, G. C. Branco and M. N. Rebelo, Phys. Lett. B 687 (2010) 194

[arXiv:0911.1753 [hep-ph]].
9. F. J. Botella, G. C. Branco, M. Nebot and M. N. Rebelo, JHEP 1110 (2011) 037

[arXiv:1102.0520 [hep-ph]].
10. F. J. Botella, G. C. Branco and M. N. Rebelo, Phys. Lett. B 722 (2013) 76 [arXiv:1210.8163

[hep-ph]].
11. T. D. Lee, Phys. Rev. D 8 (1973) 1226.
12. J. Bernabeu, G. C. Branco and M. Gronau, Phys. Lett. B 169 (1986) 243.
13. G. C. Branco, M. N. Rebelo and J. I. Silva-Marcos, Phys. Lett. B 614 (2005) 187 [hep-

ph/0502118].
14. L. Lavoura and J. P. Silva, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276].
15. F. J. Botella and J. P. Silva, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288].
16. C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039.
17. H. Fritzsch, Phys. Lett. B 73 (1978) 317.
18. G. C. Branco, D. Emmanuel-Costa and C. Simoes, Phys. Lett. B 690 (2010) 62

[arXiv:1001.5065 [hep-ph]].


	Introduction
	General Framework
	Weak Basis Invariants

