

Search for high mass resonances with ATLAS

Marianna Testa
LNF-INFN
On behalf of the ATLAS Collaboration

Rencontre de Moriond: QCD and High Energy Interactions La Thuile 25 March-1 April 2017

Introduction

- After Higgs discovery, the Standard Model (SM) is a self-consistent theory
- So far in good agreement with data
- Many experimental observations not explained in the SM
 - Nature of Dark Matter/Energy
 - Baryon asymmetry
 - neutrino masses
- Theory problems:
 - Hierarchy problem: m_{FW}/M_{PI} ~ 10⁻¹⁶
 - How to accommodate gravity
 - Unexplained hierarchical structure of Yukawa couplings

Model and ideas to address them:

- SUSY
- (*)• Compositeness, Extra dimensions
 - Extended Higgs Sector
 - Top Partner
- (*)• W'/Z'
 - Minimal Dark Matter
 - Hidden Sectors

(*) in this talk

Search of physics beyond the SM is well motivated

Introduction

ATLAS has an extensive search program to prove or discard models

^{*}Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

 \dagger Small-radius (large-radius) jets are denoted by the letter j (J).

Outline

Searches of new phenomena with di-jet final states full 2015+2016 dataset

Search for new resonances decaying to a charged lepton and a neutrino full 2015+2016 dataset

Search for new high-mass resonances in the dilepton final state with 13.3 fb⁻¹ and 3.2 fb ⁻¹

Excellent performance of LHC in Run 2:

- Center-of-mass energy: √s =13 TeV
- Collected good data: 36.1 fb ⁻¹ 3.2 fb ⁻¹ in 2015, 32.9 fb ⁻¹ in 2016

Search for new phenomena in di-jets

arXiv:1703.09127

Search for new phenomena in di-jets

Di-jets final states sensitive to a broad class of new phenomena, through **generic** features of Beyond Standard Models (BSM) signals

Resonances searches

- localized excess in the m_{ii} distribution
- Sensitive to narrow resonance:
 - Quantum Black Hole (QBH), Excited quark (q*), W', excited W*

Di-jets angular distributions anomalies:

- BSM give more isotropic signature wrt to QCD
- More Sensitive to non-resonant signals
 - Contact interactions at compositeness scale Λ

Resonance Search in di-jets

- Single jet trigger p_T > 380 GeV
- $p_T^{lead(sub)} > 440 (60) \text{ GeV}$
- To suppress t-channel scattering:
 - $y^* < 0.6(1.2), y^* = |y_{lead} y_{sublead}|/2$
 - $m_{ii} > 1.1(1.7) \text{ TeV (for W*)}$
 - fully efficient trigger selection
 - Smooth QCD background from a Sliding Window Fit
- BumpHunter algorithm to scan for excesses
 - Most discrepantinterval: 4326 4595 GeV
 - global significance of 0.63 (0.83 for W*)

No evidence of a localized contribution from BSM phenomena

Resonance Search in di-jets: Exclusion limits

	95 %CL exclusion limit				
Model	Observed	Expected			
Quantum Black Hole, ADD	8.9 TeV	8.9 TeV			
Excited quark	6.0 TeV	5.8 TeV			
W'	3.7 TeV	3.7 TeV			
W*	3.4 TeV, 3.8-3.9 TeV	3.6 TeV			

Improved limits from 7% to 40% wrt analysis based on 3.2 fb⁻¹

Limits on generic Gaussian signals

- can be re-interpreted with various signal models
- MC-based folding methods to factorize physics & detector effects
- Excluded at 95% CL effective cross-sections from 20-50 fb at $m_G < 2$ TeV to 0.2-0.4 fb for $m_G > 6$ TeV

Marianna Testa

m_G [TeV]

Angular Searches in di-jets

- Single jet trigger $p_T > 380 \text{ GeV}$, $p_T^{\text{lead(sub)}} > 440(60) \text{ GeV}$
- $y^* < 1.7$, $y_B < 1.1$, $m_{jj} > 2.5$ TeV, y_B semi-sum of rapidities
- Signal: Contact interactions at compositeness scale Λ

$$\begin{split} L_{qq} = & \frac{2\pi}{\Lambda^2} [\eta_{LL} (\bar{q}_L \gamma^\mu q_L) (\bar{q}_L \gamma_\mu q_L) \\ & + \eta_{RR} (\bar{q}_R \gamma^\mu q_R) (\bar{q}_R \gamma_\mu q_R) \\ & + 2\eta_{RL} (\bar{q}_R \gamma^\mu q_R) (\bar{q}_L \gamma_\mu q_L)], \\ \eta_{LL} = \pm 1, \eta_{RR} = \eta_{RRL} = 0 \end{split}$$

 QCD background described by MC, normalized to data in each m_{ii} bin

$$\chi = e^{y*} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

- Dominant Uncertainty:
 - Jet energy scale (exp) and renormalization/factorization scales (theory)

Angular Searches in di-jets: Exclusion limits on contact interactions

No deviations from background expectations

95 %CL exlusion limit on Λ					
Model	Observed	Expected			
ηιι=-1	21.8 TeV	28.3 TeV			
ηι.=+1	13.1 TeV 17.4-29.5 TeV	15.0 TeV			

-10% less sensitivity to other benchmark models compared to resonance search

Negative (positive) interference of signal model η_{LL} = +1(-1) with SM QCD

Search for new resonances decaying to a charged lepton and a neutrino

Search for new resonances decaying to a charged lepton and a neutrino

- BSM models introduce new heavy charged Spin-1 gauge-bosons W'
- W' → Iv experimental signature
- Benchmark model: Sequential Standard Model (SSM)
 - Same fermion coupling as the SM W
 - no coupling to W,Z
 - Interference between W and W' neglected
- Analysis Strategy:
 - exactly one high- p_T lepton and large missing transverse energy
 - Compare transverse mass distribution to SM predictions

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}E_{\mathrm{T}}^{miss}\cdot(1-\cos\Delta\phi)}$$

Search of W' \rightarrow e v: event yield

- Tight ID electron p_T > 65 GeV
- $E_T^{miss} > 65 \text{ GeV, } m_T > 130 \text{ GeV}$
- Bkg with "real" leptons estimated with MC
 - Largest from W Drell-Yan production
- Bkg from misidentified objet: data-driven
- Acc × ε = 81% (77%) @ m $_{W'}$ = 2 TeV (4 TeV)

m _{II} (TeV)	0.6-1	1-2	2-3	3-7
Obs	1931	246	4	0
Exp SM	1960±140	224±23	5.7±1.4	0.4±0.4
SM+ W' 2 TeV	2260± 160	3930 ±80	380±80	1.4±0.4

 Syst. Uncertainty for Bkg and Signal:
 7% (115%) and 21% (10%)
 m_T = 2 TeV (4 TeV)

No significant excess is observed

most significant excess at $m_{W'}$ = 1.1 TeV: local (global) significance of 2.3 (0.6)

Search of W' $\rightarrow \mu \nu$: event yield

- Tight ID muon p_T > 55 GeV
- $E_T^{miss} > 55 \text{ GeV, } m_T > 130 \text{ GeV}$
- Bkg with "real" leptons estimated with MC
 - Largest from W Drell-Yan production
- Bkg from misidentified objet: data-driven
- Acc × ε = 50% (46%) @ m $_{W'}$ = 2 TeV (4 TeV)

m _{II} (TeV)	0.6-1	1-2	2-3	3-7
Obs	1392	177	3	3
Exp SM	1320±90	150±13	4.7±0.6	0.63±0.13
SM+ W' 2 TeV	1740±100	1870±90	374±28	18±4

 Syst. Uncertainty for Bkg and Signal: 12% (21%) and 6% (8%) m_T = 2 TeV (4 TeV)

No significant excess is observed

most significant excess at $m_{W'} \sim 5$ TeV: local (global) significance of 1.8 (0.1)

Search of W' \rightarrow Iv: Limits on $\sigma \cdot BR$

- Observed (Exp) limits on m W'_{SSM}
 - 5.22 (5.10) TeV for e channel
 - 4.45 (4.71) TeV for μ channel
 - 5.11 (5.24) TeV combined

Limits improved by ~ 1 TeV wrt previous analysis based on 3.2 fb⁻¹

Search of high-mass resonances in the dilepton final state

Search of high-mass resonances in the dilepton final state

Di-lepton final states sensitive to a broad class of new phenomena

- Sequential Standard Model (SSM):
 Z' with same couplings to fermions as Z
- Grand unified Theories (GUT) inspired E6 gauge group:
 - predicts two neutral gauge bosons mixing to $Z'(\theta_{E6}) = Z'_{\psi} \cos(\theta_{E6}) + Z'_{\chi} \sin(\theta_{E6})$
 - Signals considered for 6 values of θ_{E6}
- Non-resonant deviations from predicted SM dilepton mass spectrum.
 - new interactions or compositeness in $qq \rightarrow l^+l^-$
 - contact interaction rappresentation

Search of Z' → II: Analysis strategy

- Trigger: 2e with $E_T > 17$ GeV 1μ –iso $p_T > 26$ GeV OR 1μ $p_T > 50$ GeV
- Selection:
 - \geq e (μ) with E_T (p_T) > 30 GeV
 - Isolation and quality criteria
 - ϵ^{tot} = 73% (44%) for ee ($\mu\mu$) channel for $m_{7'}$ = 3 TeV
- Backgrounds with two real leptons:
 - Drell-Yan (dominant), tf, single-top, WW,
 WZ, and ZZ by MC
- Background due to jet faking electrons:
 - W +jets and multi-jet events estimated from data
- Syst. Uncertainties for bkg at m_{II} ~4 TeV:
 - e (μ) efficiency: 5% (17%)
 - e or μ energy scale and resolution: ~10%

Search of Z' \rightarrow II: Limits on $\sigma \cdot BR$

No significant excess is observed

Limit increased by 700 GeV wrt limit obtained with 3.2 fb⁻¹

			Lower limits on $m_{Z'}$ [TeV]					
Model	\mid Width $[\%]$	θ_{E_6} [Rad]	ee		ee $\mu\mu$		$\ell\ell$	
			Obs	Exp	Obs	Exp	Obs	Exp
$Z'_{ m SSM}$	3.0	_	3.85	3.86	3.49	3.53	4.05	4.06
	1.2	0.50	3.48	3.49	3.18	3.19	3.66	3.67
$Z_{ m S}^{i}$	1.2	0.63π	3.43	3.44	3.14	3.14	3.62	3.61
$Z_{ m X}' \ Z_{ m S}' \ Z_{ m I}' \ Z_{ m N}'$	1.1	0.71π	3.37	3.37	3.08	3.08	3.55	3.55
Z'_n	0.6	0.21π	3.25	3.25	2.96	2.94	3.43	3.42
$Z_{ m N}^{\prime}$	0.6	-0.08π	3.23	3.23	2.95	2.94	3.41	3.41
Z_ψ'	0.5	0π	3.18	3.18	2.90	2.88	3.36	3.35

Search of $Z' \rightarrow II$: Exclusion limits on contact interactions

- Based on only 3.2 fb⁻¹ of data collected in 2015
- Different chiral structures tested:
 - Left-right ,left-left, right-rights
 - $\eta_{LR (RL)} = \pm 1$
 - $\eta_{LL(RR)} = \pm 1$
 - the others to zero
- (con)destructive interference of signal model η_{ij} = -1(+1) with SM QCD
- Limits on Λ between 16.7 and 25.2 TeV

Phys. Lett. B 761 (2016)

Chiral Structure

Conclusions

Search for new physics has been performed using full 2015+2016 dataset No deviations from SM expectations are observed

- Di-jets final states
 - Limits on resonances masses between 3.4 and 8.9 TeV
 - contact interactions scale Λ > 13 29 TeV
 - New techniques to fit background and new folding methods
- lepton+neutrino final state: M _{W'} > 5.1 TeV
- dilepton final state:
 - $M_{Z'} > 3.4 4.1 \text{ TeV}$
 - contact interactions scale Λ > 17-25 TeV

Improved limits on many signal scenarios compared to previous results

Backup

Limits on Z'

Z' model: axial-vector couplings to al SM quarks and to Dirac fermion dark matter

Assume decay to DM negligible:

 \rightarrow rate and resonance width depend only on the coupling to quarks, gq, and the mass of the resonance m_{7} ,

